“Lalhoun

Institutional Archive of the Naval Pastgraduate School

Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2005-03

An analysis of disc carving techniques

Mikus, Nicholas A.

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/2219

This publication is a work of the U.S. Government as defined in Title 17, United
States Code, Section 101. Copyright protection is not available for this work in the
United States.

Downloaded from NPS Archive: Calhoun

Calhoun is the Maval Postgraduate School's public access digital repository for

‘: DUDLEY research materials and institutional publications created by the NPS community.
ﬂ““ Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first

w.““‘ KNOX appointed — and published — scholarly author,

LIBRARY Dudley Knox Library / Maval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

hitp://www.nps.edu/library

\Ch

M

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

AN ANALYSIS OF DISC CARVING TECHNIQUES

by
Nicholas Mikus
March 2005
Thesis Advisor: Chris Eagle
Second Reader: George Dinolt

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 07040188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2005 Master’s Thesis

4. TITLE AND SUBTITLE: An Analysis of Disc Carving Techniques 5. FUNDING NUMBERS

6. AUTHOR(S) Mikus, Nicholas

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

Disc carving is an essential element of computer forensic analysis. However the high cost of commercial solutions coupled
with the lack of availability of open source tools to perform disc analysis has become a hindrance to those performing analysis
on UNIX computers. In addition even expensive commercial products offer only a fairly limited ability to “carve” for various
files.

In this thesis, an open source tool known as Foremost is modified in such a way as to address the need for such a carving
tool in a UNIX environment. An implementation of various heuristics for recognizing file formats will be demonstrated as well
as the ability to provide some file system specific support.

As a result of these implementations a revision of Foremost will be provided that will be made available as an open source
tool to aid analysts in their forensic investigations.

14. SUBJECT TERMS 15. NUMBER OF
Computer Forensics, Disc Carving, Data Carving PAGES
159

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

i

Approved for public release; distribution is unlimited

AN ANALYSIS OF DISC CARVING TECHNIQUES

Nicholas A. Mikus
Civilian, Federal Cyber Corps
B.S., University of Illinois Chicago, 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

March 2005
Author: Nicholas Mikus
Approved by: Christopher S. Eagle
Thesis Advisor

George Dinolt
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Disc carving is an essential element of computer forensic analysis. However the
high cost of commercial solutions coupled with the lack of availability of open source
tools to perform disc analysis has become a hindrance to those performing analysis on
UNIX computers. In addition even expensive commercial products offer only a fairly

limited ability to “carve” for various files.

In this thesis, an open source tool known as Foremost is modified in such a way
as to address the need for such a carving tool in a UNIX environment. An
implementation of various heuristics for recognizing file formats will be demonstrated as

well as the ability to provide some file system specific support.

As a result of these implementations a revision of Foremost will be provided that
will be made available as an open source tool to aid analysts in their forensic

investigations.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

TABLE OF CONTENTS

I. INTRODUCTION....uuuiiiivnricssnnicsssnccsssncsssnss 1
A. DISC CARVING BACKGROUND.....ccccceeirarinssanisssanssssascsssassssssssssssssssssssssnns 2

B. PURPOSE OF STUDY ..uuuiiiisuiicisnnicssnnicsssncsssncss 3

C. THESIS ORGANIZATIONONccoveeersercssarcssesssssessssssssssssssssssssssasssssasssssass 5

IL. BACKGROUND ..ccicivuiiennnricssnnicsssnessssncsssossssssssnss 7
A. FOREMOST ..ccuoiiinuiicnsnnicssanicssanssssassssssssssssssssasssssasssssasssssssssssassssssssssssssssnsssssass 7

B. FILE ...ouuoiiiiiniiinniicnsnnicnsnnicsssncsssssssssssesssnsssssnss 9

III. IMPLEMENTATION ...oviiineicnssencsssnnssssnssssasesssasssssasesss 13
A. HEURISTICS .uuiiiiiiinnnicsniicsnncsssscsssicssns 13

1. OLE ATCRIVE..ucciiiruiinirarinssanisssaresssanesssanessses 13

2. PDF (Adobe Portable Document Format)..........ccceeceeercurrcscneccscnnecnns 20

3. JPEG couuiiirriiinneicnnnnicssnnissssnssssassssssssssssssssssssssassssssssssssssssssssssssssssnsssses 22

4. GIF ceriiiiinticnnninsnticsnnisssecsssscssssnssssssssssssssssssossssssssssssssssssssssssses 25

5. BMP (Windows Bitmap Files)cccovvvericnisnnniccsssnnrecsscnnnecssssnssecsnns 26

6. MOV (QuickTime Movie files) ..cccceeeerrreriecsssnsicssssnnsccsssassesssnssscsses 28

7. WMYV (Windows Media Video) ...ccccveeeeiicccissscssnnnnsiceccssssssnsessssscsssas 30

8. ZUIP caneorinnriisnencsnnicsssrssssnsssssssssssssssssssssssssssssesssssesssssossssssssnssessnsssses 33

0. GZIP ..ouuonnveiniarinsraninssanesssssessasssses 36

10, RIFF ciiiiieiinnninnnninsnncsssncssssiossssssssssssssssssssssssssssssssssessssssssssses 37

11, HTIML coveiiiieicnnnnncssnnsssssnssssasssssssssssasssssasssssassssssssssssssssnsssssssssssnsssssass 39

12. CPP (C/CH+ SoUrce Code)cccrcnneiccssssesecsssssssssssssssesssssssssssssassssssses 39

B. SEARCH ALGORITHMS......uiiiiniinnrnncsssancsssasssssassssssssssssssssssssssssssssasssssans 40

1. Boyer Moore DeSCriptioncoceeeeceecssnicssnnecssnnscsssnesssnssssssessssseses 40

2. AlGOrithm ANALYSISuueeieeiirnricnicsniicssssnnnesssssnnecssssssesssssssssssssssssssanes 42

C. INDIRECT BLOCKS....uutiiiuiinnnninsnncsssicssssncssses 42

1. UNIX File System OVervieweeicccccsnrecssssnsecsssssssesssssssssssssssssssasns 42

2. Indirect Block Detection.........cccceeccserccsunncssnnncssnnesssnnesssnessnsnessnsneses 42

IV. EXPERIMENTAL RESULTS...cuuittnritineicssnicssnisssansssssssssssssssssssssssssssssssssssssssnsssses 47
A. OVERVIEW.....iiiiniinnnniicnsnnicsssnisssssissses 47

B. NTFS 47

C. FAT32u i iceiiiiticnnninssnnicssnissssnesssssssssssssssssssssssssssssssssssssssessssssssssssssnssossssssses 51

D. EXT2/EXT3 ..cciiecrreicssanesssanssssanssssanssssnssssasssssasssssasssssassssssssssssssssssssssnsssssassssss 55

V. CONCLUSION 59
A. SUMMARY .cuciiirnicsssnncsssnnssssnssssssssssasssssasssssasssssassass 59

B. PROBLEMScooitiiiiuiicnnnicnsnnicsssnissssssssssssssssssssssssssssssssssessssssssssssssssssssssssses 59

C. FUTURE WORKooiiiinuiinnrnninnsanisssanissssnesssasses 60
APPENDIX A. SOURCE CODE......uuuiieviiirsricssnicssnricsssnscssssesssssssssssssssssosssssosssssssssssssssssss 63
A. EXTRACT.C .uuueierveicneressanesssanssssassssssssssasssssasssssassssssssssssssssssssssssssssassssssssssss 63

B. EXTRACT H.uuuoioovuiiircniicssnnicsssncssssncsssssossssssssssssssssssssssssssssessssssssssssssssssssssssses 86

C. APLCeirrireeenteneennninsnensnesssssssssssnssssssssssssssssssssssssssssssasssssssssssssssssassssnsssns 88
D. OLEH .ocoueieiinieniennennennennensessssssessessssssssssssssssssssssssassssssssssasssssssessassssssaes 95
E. ENGINE.C 97
F. DIR.C niereeneneennintennssneenesnessssssssssessssssessassssssssssssssssssessassssssssssasssasssess 105
G. HELPERS.C..uureinienninnennaennnenssessasssssssss 108
H. MAIN.Clnererenrennenninsnesnsssnsssesssessessasssssssssssessasssessassssssssssssssasssssssssssssssssssss 115
I. MAINH coevinnienrensnensnenssnnssnesssnsssssssanssssssssssssssssassssssssassssssssasssssssssssssssssassss 118
J. CONFIG.Cluuunnnrrnrnnnseesninsnesnsssesssesssssessssssssssessasssssssesssssssssssssasssassassssssss 124
K. STATE.Cuuererrnnrnnnensnnesnensnnssnnssssssssnssssssssssssssssssssssssssssssssssssssassssassssssssns 128
L. CLLCurenierenennnennesenssesssessssssesssessssssessssssssssessasssssssessssssssssessassssssassssssns 135
M. FOREMOST.CONF 136
LIST OF REFERENCESuuiiiniininieneentennennesnessnesscssessssssssssessssssssssessassssssssssassssssas 141
INITIAL DISTRIBUTION LIST ...uuconuinnienniniinnsnnnsnesssnnssssssnsssnsssssssssssssssssssssssssassssasssns 143

viil

LIST OF FIGURES

Figure 1. ole-dump output of a MS Word Document...........cccceccveeriiieiiiieeniieeciie e 17
Figure 2. ole-dump output of an Excel Spreadsheet............cccoviieiiiniiiiiiniiiieiecceeee, 18
Figure 3. ole-dump output of an Power Point Document..............ccccovveviiieniiienciieecee e, 19
Figure 4. Linearized PDF (From Ref. [11]).cccciiiiiiiiiiiiieieeeee e 21
Figure 5. Non Linearized Header...........cccveiiiiiiiiiiiiiiieccie ettt 22
Figure 6. QuickTime Movie Structure (From: Ref. [17])...cccceeviieiiiniiiiieiiiieeieeeeeeeee, 29
Figure 7. ASF File Structure (From: Ref. [18]) ..cueiiiiiiiiiieiie et 31
Figure 8. Basic Zip File Structure (From Ref. [19])...ccooviiiiiiiiiiiieeee e, 34
Figure 9. Brute Force Search (From Ref. [23]) .oocuvviiiiiiioiiieie e 41
Figure 10. Boyer Moore Search (From Ref. [23])...cccooiiiiiiiiiiiieieeeeeeee e 41
Figure 11. Debugfs SCreenshot........oocviiieiiiieiie e 43
Figure 12. Indirect Block Screenshot..........ccoocuierieeiiiniiiiiiieeiee e 44

X

THIS PAGE INTENTIONALLY LEFT BLANK

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.

LIST OF TABLES

Foremost configuration file...........cccoeviiieiiiiiiiie e 8
FILE sample magic formatcccooeerieiiiieiiieiienie e 10
OLE Header Structure (After: Ref. [8])..ccoveeiiieeiieeiieeieeeeeeee e 14
OLE Header HeXAUMPccccuieiiiiiiiiiieiieeiiece et 15
JPEG Marker Information (After: Ref.[13]).ccccvveiiiieiiieeeeeeeeee 23
Canon Digital Camera JPEG representation.............ceceeveerereeneenieneeneenenne. 24
GIF File FOImMAt ...cccueiiiiiiiiiiieeeee e 25
BMP Header Information(After: Ref. [16])...cccviieiiiiiiiieiiiieceeeeeeeeeee 27
BMP Header in hexadecimalccccoiiiiiiiiiiiiiiiieeeeeee 28
MOV Extraction Algorithm Step-through...........ccoooioiiiiiiiiii 30
ASF File Properties Object Structure (After: Ref. [18])..ccccvvevcvveecciiiiieeen. 32
ASF Header in Hexadecimalc.ccoceeeiieiiiiiiienieeieeie e 33
ZIP local file header structure (From Ref.[19]) ...ccceeeviiiiniiiiiiiiiiieeieeeiee 34
End of Central Directory Object Structure (From Ref.[19])......ccccccuveivrnnennne. 35
ZIP extraction algorithm step-through............ccccoeeiiiiiiiiiiiiiee e, 36
GZIP Header in Hexadecimal.............coccueeriiiniieniieniieiiecieeeeee e 37
Wave File Headerc.ooiiiiiiiii e 38
AVIFile HEadRTeiiiiiiiiiiiiiiecceeeeee et 38
Brian Carriers JPEG test image files (From Ref. [25])...ccccvviiiiiiiiiiiiieee. 48
ILOOK results from NTFS sample imageccocveeevvenieeiiienieeieeniecieeeeee 49
Foremost (0.69) results from NTFS sample image.........ccccceeevveeecveeecieeennenn. 50
Foremost (1.0) results from NTFS sample image..........cccccceevveenieeieeneennenne. 51
Sample FAT32 teSt IMAZE......veeeiuiieiciieeiieeeiieeetee et e e e 52
Foremost (0.69) results from FAT32 sample image........cccceeeveevveecieenieennenne. 53
Foremost (1.0) results from FAT32 sample image..........ccccveeeeveeeereeenreeennnn. 54
Sample EXT2 TMaGE......c.ceecvieriieeiieiieeieeiie ettt ettt sveeeee e 55
Foremost (0.69) results from EXT2 sample image.........ccccveevveeeeveeenieeennnn. 56
Foremost (1.0) results from EXT2 sample image...........ccccceevveerveeniieneeenenne. 57

xi

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation
under Grant No.DUE-0114018.

Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the author and do not necessarily reflect the views of the National
Science Foundation.

This paper, as well as most things in my life, would not have been possible
without my wife Holly.

I would also like to thank Jesse Kornblum and Kris Kendall for developing the
open source tool Foremost for analysts to use and learn from.

Finally I would like to thank LCDR Chris Eagle for teaching me to be “leet”.

xiil

THIS PAGE INTENTIONALLY LEFT BLANK

X1V

I. INTRODUCTION

As computers become more prevalent in society, their use for criminal and other
nefarious purposes also increases. This has lead to a demand for Computer Forensic
specialists to analyze digital evidence to help catch these criminals. In response to this
demand the FBI and other law enforcement agencies are building Regional Computer
Forensic Laboratories across the country. These facilities are equipped with state of the
art tools and highly trained examiners to help with an overwhelming case load. In FY
2003, the RCFL Program processed 82.3 terabytes of data; this is the equivalent of
roughly 3,427,644 boxes of paper filled with text [Ref. 1]. The San Diego RCFL alone
received over 700 requests to review various cases involving the need for computer
forensic examinations. This shows the magnitude of the increase in the computer related
evidence, and the bad news is, it is only going to get worse for examiners. As hard drives
and multimedia storage devices grow exponentially so must the capabilities of the tools
which investigators use to analyze these devices. One major area that must be improved

is referred to as disc carving.

Disc carving is an essential aspect of Computer Forensics and is an area that has
been somewhat neglected in the development of new forensic tools. The term disc
carving can be defined as data recovering using “raw” information as opposed to file-
system meta-data. Disc carving has a great impact on computer forensic cases because it
adds the flexibility of being able to dissect stored information independent of any
underlying file system structure. Disk carving has also become synonymous with the
term data carving but for the context of this paper the term disc carving will be used. My
research in the arena of disc carving will aid investigators in being able to extract useful
information from storage devices using an open source product which can automate a
large portion of the process. Making this tool and its source code freely available
eliminates one of the greatest inhibitors which is the cost of many commercial forensic

suites.

New approaches to disc carving must be studied to help develop more efficient

and reliable products for investigators to use. These methods can hopefully offset some

of the increasing work load that high volume storage devices pose to limited number of
investigators. In addition this research can help in the prosecution of criminals who use

computers in some form or another in the conduct of their business.

A. DISC CARVING BACKGROUND

Disc carving refers the ability to recover files from a medium which may or may
not be a recognizable file system. It is commonly used in reference to extracting files
from unallocated or slack space from a given file system [Ref. 2]. Files are allocated disk
space in multiples of the file system block size. Slack space refers to the unused space
within the last block allocated to a file. This space lies between the last data byte of the
file and the end of its associated block. The amount of slack space a file contains can be
computed as (file size) modulo (block size). Thus since all files do not end exactly on

block boundaries this “excess” space can be used to hide data from file system view.

Disc carving research has been relegated to the background of forensic tool
development. Tools such as ILOOK [Ref. 3], Encase [Ref. 4], and FTK (Forensic Tool
Kit) [Ref. 5] focus on recovering files via metadata. It is true that this is a very effective
and efficient method of file recovery, however, if the metadata is corrupted or non-
existent, then these methods usually fail. Also the data in question could have been
“deleted” from the file system view. However, the data could very well be, and often is
still intact on the disc, it is just a matter of “carving” it out. In my experimental results
data that is years old can often be recovered from unallocated space, depending on the

volume size and disc activity.

FTK and Encase address the issues of data carving but these tools are Microsoft
Windows based and are very expensive. The cost of these tools and the fact that the
extraction methods are closed source is an inhibitor to the forensic community that
wishes to use a more robust tool that can perform successful extractions. ILOOK is
another Microsoft Windows based tool used in forensic investigations but it is only
available to Law Enforcement and government agencies. ILOOK is free to specific
government agencies that support a law enforcement directive; however, like FTK and

Encase, it is closed source. Thus the ability to learn from and improve extraction

2

methods is diminished. The fact that the majority of tools currently used by law
enforcement are closed source has lead some developers and forensic researches to turn

to the open source community.

In the open source world Brian Carrier’s Sleuthkit has become a standard tool for
doing forensic analysis on UNIX systems. This tool has provided a wealth of resources
to examiners that use a UNIX platform and also those faced with fiscal constraints who
cannot afford its Windows counterparts. However, one glaring hole in the Sleuthkit is
that it provides no carving functionality. Thus investigators looked to a tool named
Foremost to fill in the gap. Foremost is a very powerful disc carving tool but it is lacking
in some respects as chapter II will discuss. The eventual inclusion of disc carving
functionality in Sleuthkit will help solidify its place in the forensic community and

provide a viable alternative to commercial products.

B. PURPOSE OF STUDY

The purpose of this research is to develop a more intelligent tool to extract files
from a medium independent of its file-system structure. Such a tool will greatly reduce
the time spent by investigators plowing through binary file representations trying to
ascertain what files can and cannot be recovered. Current open source methods of disc
carving lack the sophistication needed to provided a robust disc carving program. The
general idea to develop such a tool is to mimic the behavior of the file command available
on UNIX systems but to apply that intelligence to the disc carving tool Foremost.
Foremost is a utility that “carves” files out of raw data blocks based on file header and
footer data. The file command, which will be covered in depth in chapter II, often looks
at more than just the header of the file in order to comprehend the file’s internal data
structures as well. If the functionality of file and Foremost were combined then a much
more powerful tool could be produced. The strategy that emerged as the most fruitful in
the development of extraction methods was to perform a more detailed analysis of
specific file data structures, allowing for a more in depth recognition as well as increasing
the speed of the program. Speed is obviously key when performing analysis of very large
disc images, the data structure approach does require the program to become more

intelligent but it will save time for the examiner who is currently required to at least have
3

a working knowledge of file format specifications in order to successfully recover files
manually. The automation of this process however challenging, offers great promise in

terms of productivity.

My research produced many extraction algorithms which can then be scrutinized
and tested via the vast open source forensic community. Creating open source forensic
tools is a great way to develop and test tools economically and efficiently. The current
implementation of the algorithms described in chapter III can be viewed in the CVS

repository of Foremost at http://cvs.sourceforge.net/viewcvs.py/foremost/foremost-1.0/.

The availability of the enhancement has lead to increased feedback from the forensic
community about features they would like to see as well as problems they encounter.

The outcome of the cycle of publishing and revising the source code will
eventually lead to a more robust library of extractions methods that can essentially do the
“dirty work” of looking at blocks of data trying to determine if the file is still intact and
what type of file is it. Tools like Foremost solve many problems but also introduce new
ones. However, these problems may be viewed in a positive light because their solutions

lead to more intelligent and efficient products that can aid analysts in data carving.

The debate against open source is usually that the software product may be more
prone to exploitation. This is not a major concern with Forensic software as it is not
providing a service to multiple clients, just analyzing a local drive. Thus in the case of

forensic software, using open source tools just makes more sense.

The goal of a good disc carving tool is to remain file-system independent, which
ensures the flexibility of being able to analyze a wider range of storage media. However,
options should be added if knowledge of the file-system of a given device is obtained.
One example of this is the problem that indirection blocks, used in UNIX file-systems,
pose to disc carving. This issue is covered in great detail in chapter three and is another
area that commercial forensic products fail to address in the context of disc carving.
Thus this paper will describe the implementation of algorithms which will enhance
extraction capabilities of an existing Forensic tool, independent of file-system structure,
but also, when possible, leveraging certain file-system attributes that can aid the

extraction process.

C. THESIS ORGANIZATIONON

This paper will present a working implementation of a disc carving tool that can
recover specified files from any block of raw binary data such as, but not restricted to,
partial or complete disk images. Chapter II details the operation of Foremost and the file
command and explains how a hybrid will benefit the forensic community. Chapter III
will provide a description of the important algorithms and the details of their
construction. The algorithms include file extraction methods as well as indirection block
detection for UNIX file-systems. Full source code examples of each extraction algorithm
are provided in Appendix A. Chapter IV will provide a set of experimental results when
running the foremost enhancement versus various data carving tools. Different files
systems are discussed and tested as well as the details of the indirect block detection
capabilities. Chapter V will conclude my research by discussing problems faced as well

as describe future work in this are of Computer Forensics.

THIS PAGE INTENTIONALLY LEFT BLANK

II. BACKGROUND

A. FOREMOST

Foremost is an open source forensic tool created for the Linux platform and
developed by Special Agents Kris Kendall and Jesse Kornblum of the U.S. Air Force
Office of Special Investigations. In accordance with 17 USC 105, this tool is not afforded
any copyright protection because it is a work of the U.S. government. The tool was
inspired by, and designed to imitate the functionality of, the DOS program CarvThis,
written by the Defense Computer Forensics Lab. Foremost enables forensic examiners to
automatically recover files or partial files from a bit image (or the media itself) based on

file header and footer types specified in a user-defined configuration file.

Foremost works by reading into memory a pre-defined portion of the media or
media image under examination. By default this chunk of memory is 10MB, thus images
are analyzed 10MB at a time. Each chunk is searched for file headers contained within
the Foremost configuration file. If a matching header is found, then Foremost attempts to
locate the corresponding end of the file. Foremost will search for the footer (which
signifies the end of the file) until a file size limit listed in the configuration file is reached.
If the footer is found then the recovered file data is written to a separate disk file,
however if it is not then Foremost will dump the maximum file size after the header. If
no footer is defined in the configuration file then foremost will extract the maximum
number of bytes specified by the configuration file after every header is found. Using a
file size limit serves as a means to stop Foremost from adding data to a recovered file if
the appropriate file footer is not found. This is a fairly efficient approach if such a

header/footer pair is uniquely defined but this is not often the case.

Another limitation of Foremost is the fact that even if a file is successfully
extracted, the same data that was just analyzed is checked again. This method is
designed to recover embedded files containing the header signature but can be very
computationally expensive. This implementation is flawed in the case where Foremost
cannot determine the end of the file, thus it merely dumps a predetermined amount of

data, this data is then searched for the same header. Files that contain multiple headers

result in fragments of files being written to disk often resulting in the creation of multiple
garbage files. This reduces the speed of the program as time is wasted re-analyzing and
re-extracting data that has already been extracted as part of a larger file. This added
execution time could be better spent ensuring a valid extraction in the first place rather

than relying on forensic specialists to wade through redundant fragments of a given file.

Table 1 illustrates some sample Foremost configuration file definitions. The first
field denotes the suffix appended to the file if extracted, the second defines whether the
search to be performed is case sensitive, followed by the maximum defined file size and
lastly the header/footer pair. Notice the definition for avi doesn’t include a footer; this is
a common occurrence in the configuration file. If this is the case then Foremost will just
extract the maximum amount following the header, often leading to truncated extractions.
Other formats in the configuration file that do not contain an adequate footer include doc,

mov, bmp, xls, java.

Suffix | Case Sensitive | Max Size Header Footer
jpg Y 20000000 | \xfi\xd8\xff\xe0\x00\x10 | \xff\xd9
htm N 50000 <html </html>
avi Y 4000000 | RIFF????AVI

Table 1. Foremost configuration file

These formats show the flawed method by which these files are extracted. The
program then relies on a forensics analyst to extract useful information from the
maximum file amount. This amount may not be of sufficient size, thus forcing the
analyst to increase the file size and re-run the program iteratively until enough of the file
has been extracted. This is an added burden to the time consuming task of performing a
detailed analysis of very large storage devices. If this process could be made more
intelligent then examiners could spend more time analyzing the evidence rather than

extracting it.

B. FILE

File is a program which examines a given file’s content in an attempt to classify it
based on the actual data in the file rather than merely the suffix (.exe) [Ref. 6]. There are
three sets of tests that are performed by file: file system tests, magic number tests, and
language tests. The first test that succeeds causes the file type to be printed. The idea of
the Foremost enhancement is to harness the same type of built-in intelligence provided in

the magic number tests.

The determined file type will usually fall into one of the following categories: text
(the file contains only printable characters and a few common control characters and is
probably safe to read on an ASCII terminal), executable (the file contains the result of
compiling a program into a binary form understandable by some operating system), or data
meaning anything else (data is usually ‘binary' or non-printable). Exceptions are well-
known file formats (core dump files, tar archives, etc.) that are known to contain binary
data. When modifying the /usr/share/magic file or the program itself, it is necessary to
preserve these keywords. Note that the file /usr/share/magic is built mechanically from a
large number of small files in the subdirectory Magdir in the source distribution of this
program, these files can be modified by a user knowledgeable about a specific file

specification.

The file system tests are based on examining the return from a stat(2) [Ref. 7]
system call. The program checks to see if the file is empty, or if it's some sort of special
file. Any known file types appropriate to the system you are running on (sockets,
symbolic links, or named pipes (FIFOs) on those systems that implement them) are

discovered if they are defined in the system header file <sys/stat.h>.

The magic number tests are used to check for files with data in particular fixed
formats. The canonical example of this is a binary executable (compiled program) a.out
file, whose format is defined in a.out.h and possibly exec.h in the standard include
directory. These files have a "'magic number' stored in a specific, well defined location
near the beginning of the file that tells the UNIX operating system that the file is a binary
executable, and which of several types thereof. The concept of ‘magic number' has been

adopted by the developers of many other data file formats. Any file with some invariant

9

identifier at a small fixed offset into the file can usually be described in this way. In the
Linux operating system, the information identifying these files is read from the compiled
magic file /usr/share/magic.mgc , or /usr/share/magic if the “compiled” file-magic.mgc
does not exist. Notice Table 2 which shows how the standard JPEG header is defined in
the magic file. More tests are performed to determine more information about the image
but the principal of the program is that it looks at the data structures of the file as opposed

to just header information.

Offset | Data Type Data to match Description

0 Beshort 0xffd8 JPEG image data

>6 String JFIF \b, JFIF standard

Table 2. FILE sample magic format

If a file does not match any of the entries in the magic file, it is examined to see if
it seems to be a text file. ASCII, ISO-8859-x, non-ISO 8-bit extended-ASCII character
sets (such as those used on Macintosh and IBM PC systems), UTF-8-encoded Unicode,
UTF-16-encoded Unicode, and EBCDIC character sets can be distinguished by the
different ranges and sequences of bytes that constitute printable text in each set. If a file
passes any of these tests, its character set is reported. ASCII, ISO-8859-x, UTF-8, and
extended-ASCII files are identified as "“text" because they will be mostly readable on
nearly any terminal; UTF-16 and EBCDIC are only "“character data" because, while they
contain text, it is text that will require translation before it can be read. In addition, file
will attempt to determine other characteristics of text-type files. If the lines of a file are
terminated by CR, CRLF, or NUL, instead of the Unix-standard LF, this will be reported.

Files that contain embedded escape sequences or overstriking will also be identified.

Once the file program has determined the character set used in a text-type file, it
will attempt to determine in what language the file is written. The language tests look for
particular strings that can appear anywhere in the first few blocks of a file. For example,
the keyword “.br” indicates that the file is most likely a troff(1) input file, just as the

keyword struct indicates a C program. These tests are less reliable than the previous two

10

groups, so they are performed last. The language test routines also test for some
miscellany (such as tar(1) archives). Any file that cannot be identified as having been

written in any of the character sets listed above is simply said to be ""data"[Ref 6.].

These tests and the ability to define new tests based on the file offsets prototype
for the types of logic that must be incorporated into a program like Foremost to make it
more effective. The only thing file lacks for our context is a looping structure. In
addition it doesn’t concern itself with embedded files or where the file data terminates.
IHowever applying this functionality is relatively trivial once the data structures of the
file are adequately understood. File specifications are the key to utilizing the searching

capability that Foremost provides in the most efficient manner.

1 An embedded file refers to a FILE that is encapsulated within another file.
11

THIS PAGE INTENTIONALLY LEFT BLANK

12

III. IMPLEMENTATION

A. HEURISTICS

1. OLE Archive

Microsoft’s Object Linking and Embedding file format provides for a “structured
storage” environment for various types of file formats [Ref. 8]. It is basically an
abstraction so that file formats can use the OLE API to read and write data to the disk.
This is useful because the formats can then store the data as objects instead of a flat file.
It also permits more cross functionality between applications that adhere to this file
structure, therefore it is easier to copy objects from a Word document to an Excel file for
instance. However this also significantly complicates file extraction because the file

structure is much more dynamic.

Previously Foremost only provided the OLE header for Microsoft Word
documents and extracted the following the first SOKB relying upon the examiner to
determine the end of the file. The algorithms presented here provide a much higher rate
of extraction with increased accuracy of the data recovered. These algorithms make use
of an API developed by the Chicago Project (http://chicago.sourceforge.net/) whose goal
is to develop a C library to read and write Microsoft Excel documents [Ref. 9]. This API
was modified to add error detection and the ability to analyze an array of bytes as
opposed to a stand alone file. This enables Foremost to use this API to extract file

dependent information and determine what type of file was stored in an OLE structure.

Parsing the OLE data structures proved complicated but extremely rewarding
because the extraction of any interesting Microsoft File Format adhering o the OLE
format became trivial. The algorithm works by first reading the header block which is
always 512 bytes. The block size of the remaining document is defined in the header but
it is usually 512 bytes as well. This value is specified by the uSectorShift field located in
the header block which is outlined in Table 3 below. This table also provides information
about what data values are located within the OLE header and Table 4 provides a
hexadecimal display of an OLE header taken from a Word Document. Table 4 also

shows the magic number, uByteOrder, num_ FAT blocks, and the root start block in

13

bold as these fields are crucial to begin parsing the OLE data structures as they provide

where to begin reading information and how to interpret it. Using the information in the

header we can then build the FAT (File Allocation Table) of the OLE document.

Offset Data Type Name Comments

0 Char magic[8] Must equal 0x d0 c¢f 11 €0 al bl 1a el

8 Char clsid[16] class id field is generally not used

24 Ushort uMinorVersion Minor version of the format: 33 is written by reference
implementation. Used mainly for error checking purposes
in a disc carving context.

26 Ushort uDIIVersion major version of the dll format: 3 is written by reference
implementation

28 Ushort uByteOrder indicates Intel byte-ordering

30 Ushort uSectorShift size of sectors in power-of-two (typically 9, indicating 512-
byte sectors)

32 Ushort uMiniSectorShift size of mini-sectors in power-of-two (typically 6, indicating
64-byte mini-sectors)

34 Ushort Reserved reserved, must be zero

36 Ulong reserved]l reserved, must be zero

40 Ulong reserved2 reserved, must be zero

44 Ulong num_FAT blocks number of SECTs in the FAT chain

48 Ulong root_start block first SECT in the FAT Directory chain

52 Ulong dfsignature signature used for transactioning must be zero. The
reference implementation does not support transactioning

56 Ulong miniSectorCutoff Maximum size for mini-streams: typically 4096 bytes.

60 Ulong dir_flag first SECT in the mini-FAT chain

64 Ulong csectMiniFat number of SECTs in the mini-FAT chain

68 Ulong FAT next block first SECT in the DIF chain

72 Ulong num_extra FAT bl | number of SECTs in the DIF chain

ocks
76 Ulong sectFat[109] FAT block list starts here. first 109 entries
Table 3. OLE Header Structure (After: Ref. [8])

14

Offset Hexadecimal

0 d0 cf 11 €0 a1 b1 1a e1 00 00 00 00 00 00 00 00

16 00 00 00 00 00 00 00 00 3e 00 03 00 fe f£09 00

32 06 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00

48 5a 00 00 00 00 00 00 00 00 10 00 00 5¢ 00 00 00

64 01 00 00 00 fe ft ff £f£ 00 00 00 00 59 00 00 00

Table 4. OLE Header Hexdump

The FAT contains the allocation information within a compound file. Every sector
in the file is represented within the FAT in some fashion, including those sectors that are
unallocated (free). The Fat is a virtual stream made up of one or more FAT Sectors [Ref.
8]. FAT sectors are arrays of SECT’s that represent the allocation of space within the
file. Each stream is represented in the FAT by a chain, in much the same fashion as a
DOS file allocation table (FAT). To elaborate, the set of FAT sectors can be considered
together to be a linked list—where each node in the list contains the SECT of the next
sector in the chain, and this SECT can be used as an index into the Fat array to continue

along the chain [Ref. 5].

Once the File Allocation Table is parsed, it is used to extract objects embedded
within the file. This is done by examining the directory lists and then reading each entry
within them. The entries themselves hold the application specific information we are
looking for to determine what type of file it is (doc, ppt, xIs...). The FAT is essentially
an array of pointers to the directory listings which in turn are arrays of pointers to the
entries themselves. The complexity of this hierarchy of pointers is the reason the
Chicago Project developed the OLE API. Programmers need not learn the OLE file
structure in order to achieve simple tasks of reading and writing to objects within the
document. The entries can then be parsed and their name, size, and offset are stored to
help determine the type of the file and size. Notice the listing in Figure 1 below which
shows the output of a program called ole-dump which was written for the Chicago

Project. It basically reads each entry of each directory structure and dumps the
15

information to the screen. The OLE extraction algorithm uses the basic functions of this
program to help discern the size and type of the file. Notice that DIRENT 2 has the title
“WordDocument”, all word documents contain some variation of this name as an object
in one of their entries. Therefore it can be used as an identifier for Microsoft Word

Documents.

16

DI RENT_O : root directory Root Entry
prev dirent = ffffffff next dirent = ffffffff dir block =3

unkl = 20906 unk2 =20 unk3 = cO0

unk4 = 46000000 unk5 =0 unké =0

secsl =0 secs2 = 1896317920

daysl =0 days2 = 29484230

start block = 26

size = 80

DI RENT 1 : file 1Tabl e

prev dirent = ffffffff next dirent =5 dir block = ffffffff
unkl =0 unk2 =0 unk3 =0

unk4d =0 unk5 =0 unké =0

start block = a

size = 1000

DI RENT 2 : file Wor dDocunent

prev dirent = 1 next dirent = ffffffff dir block = ffffffff
unkl =0 unk2 =0 unk3 =0

unk4d =20 unk5 =10 unk6 =10

start block =10

size = 1222

DI RENT 3 : file 0005 Sunmar yl nf or mat i on

prev dirent = 2 next dirent = 4 dir block = ffffffff

unkl =20 unk2 =20 unk3 =10

unk4d =20 unk5 =10 unk6 =0

start block = 12

size = 1000

DI RENT 4 : file 0005 Docurnent Sunmar yl nf or mat i on
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unkl =20 unk2 =20 unk3 =10

unk4d =20 unk5 =10 unk6 =10

start block = 1a

size = 1000

DI RENT_5 file 0001 Conmp Qb

prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff

unkl =20 unk?2
unk4d =0 unk5
start block =10
size = 6a

Root Entry

1Tabl e

4096

Wor dDocunent 4642
Sunmar yl nf or mat i on 4096
Docurent Sunmar yl nf or mat i on 4096
ConmpQoj

106

unk3 =0

0 =
0 unké =0

Figure 1. ole-dump output of a MS Word Document

Figure 2 below shows the output of an Excel spreadsheet that has been run
through the ole-dump program. DIRENT 1 is the main identifier here and it can be used
to identify files generated by the Microsoft Excel program. Parsing the OLE File

17

Allocation Table provides a great advantage in being able to discern exactly what the

contents of the file are.

DI RENT_O : root directory Root Entry

prev dirent = ffffffff next dirent = ffffffff dir block
unkl = 20820 unk2 =0 unk3 = cO

unk4 = 46000000 unk5 =0 unké =0

secsl =0 secs2 =0

daysl =0 days2 =0

start block = fffffffe

size =0

DI RENT 1 : file Wor kbook

prev dirent = ffffffff next dirent = ffffffff dir block
unkl =20 unk2 =10 unk3 =0

unk4 =0 unk5 =0 unké =0

start block =10

size = 33a6

DI RENT_2 : file 0005 Summar yl nf or mati on

prev dirent = 1 next dirent = 3 dir block = ffffffff
unkl =0 unk2 =0 unk3 =0

unk4d =0 unk5 =0 unké =0

start block = la

size = 1000

DI RENT_3 : file 0005 Docunent Sunmar yl nf or mati on

prev dirent = ffffffff next dirent = ffffffff dir block

unkl =0 unk2 =0 unk3 =0
unk4 =0 unk5 =0 unké =0
start block = 22

size = 1000

Root Entry

Wor kbook

Sunmar yl nf or mat i on
Docurnent Sunmar yl nf or mat i on

Figure 2. ole-dump output of an Excel Spreadsheet

FEFFffff

= ffffffff

13222
4096
4096

Lastly, Figure 3 shows an example of the contents of a simple Power Point

Document with the unique identifier "Power Point Document” located in DIRENT 3.

Notice that the size of each DIRENT is used to determine the actual size of the file,

however, each size is contained within a block size that is specified in the OLE header,

thus each entry must be padded to adhere to this structure.

18

DI RENT_O : root directory Root Entry
prev dirent = ffffffff next dirent = ffffffff dir block =2

unkl = 64818d10 unk2 = 11cf4f9b unk3 = aa00ea86
unk4 = e829b900 unk5 =0 unk6 =0

secsl =0 secs2 = 3860999472

daysl =0 days2 = 29256468

start block =6
size = 19c0

DI RENT 1 : file Current User

prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unkl =0 unk2 =0 unk3 =0

unk4d =0 unk5 =0 unké =0

start block = 66

size = 38

DI RENT_2 : file 0005 Summar yl nf or mati on

prev dirent = 1 next dirent = 3 dir block = ffffffff

unkl =0 unk2 =0 unk3 =0

unk4d =20 unk5 =10 unk6 =10

start block = 36

size = bcc

DI RENT 3 : file Power Poi nt Docunent

prev dirent = ffffffff next dirent = 4 dir block = ffffffff
unkl =20 unk2 =20 unk3 =10

unkd =20 unk5 =10 unk6 =0

start block =9

size = bl2

DI RENT 4 : file 0005 Docurent Sunmar yl nf or mat i on
prev dirent = ffffffff next dirent = ffffffff dir block = ffffffff
unkl =20 unk2 =20 unk3 =10

unk4d =20 unk5 =10 unk6 =10

start block =10

size = 204

Root Entry

Current User

56

Sunmar yl nf or mat i on 3020
Power Poi nt Docunent 2834
Docurent Sunmar yl nf or mat i on 516

Figure 3. ole-dump output of an Power Point Document

Each of these documents has a very similar structure. They usually contain

summary information which includes information about the author, the file name, when

the file was last modified. Other methods to try to use the document summary

information as a type of makeshift footer are not reliable as this information can appear at

any location in the file.

The flexibility of the OLE file-structure also introduces the need for added error

detection. OLE files are complex in nature and must be verified to ensure proper parsing

and extraction. The consistency of various fields such fields as the block size of the

19

document, the number of FAT blocks, and the mini-FAT cutoff can be used to perform
error checking. This provides added assurance that the algorithm is not wasting its time

parsing corrupted data.

The extraction of OLE files offers great promise. Because the Microsoft Office
suite is so popular, documentation used by criminals can often be found in this format.
This also enhances the forensic capabilities of the UNIX/LINUX platform as reliable
OLE detection/extraction is only currently available on the Windows platform. In
addition, with the advent of OpenOffice [Ref. 10] which provides support for the
Microsoft Office suite these documents are often authored on UNIX systems as well.
Thus this detection capability provides an invaluable resource to those performing

forensic analysis.

2. PDF (Adobe Portable Document Format)

PDF is a file format used to represent a document in a manner independent of the
application software, hardware, and operating system used to create it [Ref. 11]. A PDF
file contains a PDF document and other supporting data. It is basically a binary file
which also uses ASCII tags as delimiters to describe the header and trailer data structures

in an SGML inspired fashion.

One of the main issues that earlier versions of Foremost had was that some
formats (including PDF) often have multiple footers. This creates an obvious problem:
how to determine which footer actually represents the end of the file. As a result
Kornblum and Kendall developed a REVERSE search mechanism [Ref. 12] to allow
them to find the last footer found in a given buffer. The REVERSE method essentially
looked for the last footer in the buffer and associated it with the given header. This
proved to be successful some of the time, but severely degraded its usefulness as the
buffer size grew. Often multiple PDF files would be extracted as one file. In other cases,
the footer appended was that of a corrupted PDF, causing the extracted file to be un-

readable.

Further research of the PDF file specification revealed that a PDF contains

multiple footers only if it has been “linearized”. [Ref. 11] A linearized PDF file is one

20

that has been organized in a special way to enable efficient incremental access in a

network environment. Thus linearized PDF files are very common.

The PDF extraction function searches for the keyword “Linearized” in the header.
If it is found, then the length of the file is stored in the header preceded by a “\L ”
character sequence. This approach obviously increases the speed of Foremost as the
program no longer needs to crunch through the entire PDF attempting to guess where it
terminates. In this case, the function simply performs a search for the “\L”” sequence and
parses the number that follows, which is the file size in bytes. See Figure 4 for a

structural description of a Linearized PDF.

Part I: Header
%“PDF-1.1
% Dbinary stuft

Part 2: Linearization parameters

43 0 obj

Lol

fLinearized 1 version
/L 54567 file length
/H [475 5398] Primary Hint Stream offset and length (Part 5)
/O 45 object number of first page's Page object (Part)
/E 5437 offset of end of first page
/M 11 number of pages in document
/T 52786 offser of first entry in main xref table (Part 11)
> >

endobj

Part 3: First Page xref table and trailer
xref
43 14
0000000052 00000 n
0000000392 00000
0000001073 00000 n
...cross-reference entries for remaining objects in ihe first page...
0000000475 00000 n

Figure 4. Linearized PDF (From Ref. [11])

The PDF file format is more reminiscent of an XML document than a traditional
binary document. This is why the common approach of being able to jump among data

structures does not apply to this format. However, since linearized PDF files are

21

becoming more prevalent, this algorithm will perform very quickly since the file size for
this kind of file is often found within the first 100 bytes and no more file processing is

necessary to extract these files which are often on the order of several megabytes in size.

Even when a file is not linearized the heuristic performs well in terms of
successful extraction because of the unique trailer defined by the PDF specification
(%%EOF). Hence a straight forward Boyer Moore search (described further in Chapter
IIT) for the end of the file can be performed. This approach was successfully used to
extract PDF’s prior to PDF version 1.2 because the Linearized capability was not

implemented.

Some minor error checking is also implemented. The first 100 bytes must include
an “obj” tag, the fundamental storage tag for all PDF elements. An example of a non-
linearized header is given below in Figure 5. Notice that the obj reference is still intact in

this case making it a valuable marker to determine whether or not the file has been

corrupted.
Offset | Hexadecimal ASCII
00 25504446 2D 31 2E 33 0A 25 C7 EC 8F A2 0A 36 %PDF-1.3.%Cil]¢.6
16 20 30 20 6F 62 6A 0A 3C 3C 2F 4C 65 6E 67 74 68 0 obj.<</Length
32 2037203020 522F 46 69 6C 74 65 72 20 2F 46 7 0 R/Filter /F
48 6C 61 74 6544 65 63 6F 64 65 3E3E0A 7374 72 lateDecode>> str
64 65 61 6D 0A 78 9C AD 5A 49 73 eam.xce-Zls
Figure 5. Non Linearized Header
3. JPEG

JPEG stands for Joint Photographic Experts Group, which is a standardization
committee. It also stands for the compression algorithm that was invented by this
committee. To complicate things a bit more, JPEG compressed images are often stored in
a file format called JFIF (JPEG File Interchange Format). JPEG data structures are
composed of segments that are marked by identifiers [Ref. 13]. A listing of these

markers is provided in Table 5. Each of these markers is preceded by a byte which

22

equals “Oxff”. For example a common JPEG header may look like “Oxff d8 ff e0 00 10
4a 46 49 46” (Hexadecimal), this is the simple case. The old method, implemented in

earlier versions of Foremost, of grabbing a file based on header and footer information

works well.
Marker Name Marker Identifier Description

SOl 0xd8 Start of Image
APPO 0xe0 JFIF application segment
APPn 0Oxe1 — Oxef Other APP segments
DQT Oxdb Quantization Table
SOFO0 0xc0 Start of Frame

DHT 0xc4 Huffman Table

SOS Oxda Start of Scan

EOI 0xd9 End of Image

Table 5. JPEG Marker Information (After: Ref.[13])

However, with the advent of digital cameras and the introduction of changes to
the JPEG [Ref. 14] specifications, this method is no longer satisfactory. The new formats
now allow for multiple headers, footers and even nested images, to support thumbnails
for example. Digital cameras often utilize the APP segment marker “Oxel” to signify
that they include more meta-data than the standard JFIF. Table 6 shows the hexadecimal
representation of a JPEG taken from a Cannon digital camera; notice that the JPEG
header repeats itself in the first block. The footers are also repeated for a total of 3
header/footer pairs in this specific file. Most tools that use the header/footer method of
extraction, will extract three files out of this one image, one of those being a valid
thumbnail while the others will appear as corrupt. For these reasons a more intelligent

algorithm must be provided.

However, these compound formats still adhere to the common JFIF header
structure. Thus even multiple headers and footers pose no problems to the
implementation described below. Complex files can even increase the speed of the
algorithm because, as more of the data can be skipped, less to be processed via the Boyer-

Moore algorithm.

23

Offset Hexadecimal View of JPEG Data

0 ff d8 ff €0 00 10 4a 46 49 46 00 01 02 01 00 48
10 0048 00 00 ff el Ob d5 45 78 69 66 00 00 4d 4d
20 00 2a 00 00 00 08 00 0a 01 0£00 02 00 00 00 06
180 00 00 00 01 00 00 00 48 00 00 00 01 ff d8 ff e0
190 00 10 4a 46 49 46 00 01 02 01 00 48 00 48 00 00
be0 49 153249 4524 94 f£ 00 f£d9 ffed 10 4c 50
1160 5£00 18 00 01 ff d8 ff e0 00 10 4a 46 49 46 00
1bc0 £ 00 ff d9 00 38 42 49 4d 04 21 00 00 00 00 00

Table 6. Canon Digital Camera JPEG representation

The JPEG extraction algorithm exploits the fact that each JPEG marker contains
the size of the header that the marker identifies. This allows the algorithm to jump from
header to header until an invalid header is reached. If the file is a valid JPEG then the
last marker parsed will be the SOS (Start of Scan) marker which signifies the beginning
of the actual image data. Once this marker is reached then a Boyer Moore search for the

“Oxff d9” marker (which signifies the EOF) ensues.

With this ability to parse the JPEG data structures, our enhanced version of
Foremost can now perform some error checking to ensure the file being extracting has
not been corrupted. For instance each JPEG image must contain a Huffman Table
marker as well as a Quantization Table, these checks are simple, efficient, and reduce the

amount of information that the forensic examiner must process manually.

This method of extraction increases the accuracy of extraction as well as the
speed as entire headers are skipped instead of being processed by the searching
algorithm. Headers are kilobytes in size, so the fact that they are parsed rather than

searched and interpreted byte by byte offers significant computational savings.

24

4. GIF

The Graphics Interchange Format (GIF) defines a protocol intended for the on-
line transmission and interchange of raster graphic data in a way that is independent of
the hardware used in their creation or display. There are two common versions of this
format the 87a and 89a revision [Ref. 15]. This format has remained unchanged for the
last decade and thus has proven to be a rather easy file to extract. It is one of the few
which has a defined header and footer. Both of which occur only once in the file. Thus

header and footer information is sufficient to successfully extract these files.

Table 7 illustrates header and footer information from a common GIF image. The
GIF extraction algorithm searches for the unique string “\x47 \x49 \x46 \x38” (GIFS),
once this is reached further tests are performed to determine if it is in fact a valid GIF file
and whether it is revision 87a or 89a. Once this validation is performed a Boyer Moore
search is ensues to find the unique “\x00 \x3b” identifier to determine the end of the GIF

stream.

Offset Hexadecimal

0 47 49 46 38 39 61 6¢ 02 22 03 a2 00 00 £f ff ff

48e0 60 05 5¢ 02 00 00 3b 00
Table 7. GIF File Format

The only improvement we made to this extraction method is the fact that each
version is analyzed in one pass through the data. Previous versions of Foremost would
have to do independent searches for each header (87a and 89a). These are combined in
the enhancement so search time is reduced by not analyzing the same information

multiple times.

25

5. BMP (Windows Bitmap Files)

A BMP (Windows Bitmap File) [Ref. 16] is comparatively one of the more trivial
files to successfully extract. Table 8 shown below illustrates the information provided in
a BMP header. Notice the bfSize field in bold print, as this is the size of entire file in
bytes. This is located at the offset 2 in the file! It may seem that extraction can be
performed once this information is determined but additional checks must be provided to
help ensure that the file being extracted is indeed valid BMP. The fact that header is only
marked by two bytes “\x42 \x4d” (BM) means that a lot of false positives will be handed
to the extraction function so a lot of “sanity” checking must be performed. Thus the
horizontal and vertical sizes of the BMP are checked to see if they are reasonable values.
If they are, then we have an added level of assurance that the file is indeed a Bitmap.
More error checking could be added to take advantage of the data in the rather large

header BMP files provide.

26

Offset Field Size Contents
0000h Identifier 2 bytes ‘BM’ - Windows 3.1x, 95, NT, ...
0002h File Size 1 dword Complete file size in bytes.
0006h Reserved 1 dword Reserved for later use.
000Ah BitmapData 1 dword Offset from beginning of file to the beginning of the bitmap data.
Offset
000Eh Bitmap Header 1 dword Length of the Bitmap Info Header used to describe the bitmap colors,
Size compression, ... The following sizes are possible:
28h - Windows 3.1x, 95, NT, ...
0Ch-0S/2 1.x
FOh — OS/2 2.x
0012h Width 1 dword Horizontal width of bitmap in pixels.
0016h Height 1 dword Vertical height of bitmap in pixels.
001Ah Planes 1 word Number of planes in this bitmap.
001Ch Bits Per Pixel 1 word Bits per pixel used to store palette entry information. This also
identifies in an indirect way the number of possible colors. Possible
values are:
001Eh Compression 1 dword Compression specifications. The following values are possible:
0 - none (Also identified by BI RGB)
1 - RLE 8-bit/ pixel (Also identified by BI RLE4)
2 - RLE 4-bit / pixel (Also identified by BI RLES)
3 - Bitfields (Also identified by Bl BITFIELDS)
0022h Bitmap Data 1 dword Size of the bitmap data in bytes. This number must be rounded to the
Size next 4 byte boundary.
0026h HResolution 1 dword Horizontal resolution expressed in pixel per meter.
002Ah VResolution 1 dword Vertical resolution expressed in pixels per meter.
002Eh Colors 1 dword Number of colors used by this bitmap. For a 8-bit / pixel bitmap this
will be 100h or 256.
0032h Important Colors 1 dword Number of important colors. This number will be equal to the number
of colors when every color is important.
0036h Palette N * 4 byte The palette specification. For every entry in the palette four bytes are
used to describe the RGB values of the color in the following way:
0436h Bitmap Data X bytes Depending on the compression specifications, this field contains all the

bitmap data bytes which represent indices in the color palette.

Table 8.

BMP Header Information(After: Ref. [16])

An example of a bitmap header is given in Table 9 showing that the file size

according the bytes 2-6 is 163,878 which has the hexadecimal representation “0x26 0x80

0x02 0x00” in little endian format. Also highlighted are the horizontal and vertical sizes

of the BMP located at offsets 18 and 22 in the file. With this information we can deduce

that the Bitmap is 400x407 pixels which is a reasonable value for a bitmap image. As

noted previously these are invaluable for error detection.

27

Offset Hexadecimal

0 42 4d 26 80 02 00 00 00 00 00 36 04 00 00 28 00

16 00 0090 01 00 0097 01 00 00 01 00 08 00 00 00

32 00 00 f0 7b 02 00 20 2e 00 00 20 2e 00 00 00 01

48 00 00 80 00 00 00 00 00 00 00 73 73 73 00 29 23

64 28 00 ce be bf 00 b5 a2 a5 00 0f 09 Oe 00 52 4c

80 51 00 9d 8a 8d 00 49 39 3a 00 d7 d4 d0 00 62 5c

Table 9. BMP Header in hexadecimal

The previous version of Foremost would merely check for the BM header and
then dump the next S0KB into a file and make the examiner determine the EOF. The
current implementation is an obvious improvement as the examiner can simply look at
the files content in an image viewing application as opposed to trying to interpret
hexadecimal values and deduce file specific information from them. This drastically
reduces the examiners workload because the majority of data they are looking for may be

graphical in nature, especially in cases where pornography is involved.

6. MOYV (QuickTime Movie files)

A QuickTime file [Ref. 17] is simply a collection of atoms, the basic data
structures of the file. QuickTime does not impose any rules about the order of these
atoms. This allows for ease of concatenation when editing movie files. See Figure 6 for

a typical structure of a QuickTime movie file.

28

Bvwtes

Mowie data atom I
Atom size 4
Twpe = "mdat '’ i

4' Data { “Wariable

MMowie atorm

Atom size 4

Twype = "moo ! 4

Z Data 4 “ariable

Figure 6. QuickTime Movie Structure (From: Ref. [17])

This modular file format provides flexibility to the application but is difficult to
parse using traditional methods, as no unique marker is used to signify where the file
terminates. However, if the atoms are parsed, the size of each atom is included in the
atom header. This provides the ability to jump from atom header to atom header until an
invalid header is reached. Once this occurs, the EOF has been determined. This method

also is highly optimized as MOV files are often large.

Another problem, the flexibility QuickTime files creates, is the fact that the
structure of the headers can vary somewhat. The standard atom header is of type ‘moov’
but modern digital cameras implement what is called VIPEG (Video JPEG) format which
uses the atom type ‘pnot’ as the first atom in the file. For this reason these two extraction
methods are performed separately but will both be invoked when searches for

“multimedia” files are performed.

Notice from Figure 6 that the same format of length, then type, and then data
(value) is used as the basic structure of an atom. Table 10 provides a step by step walk

through of how a MOV file is parsed through iteration of the extraction function. The

29

test case was a VJPEG file that was 9,275,716 bytes in size. Each iteration shows that the
first four bytes of the header contains the header size in big endian format while the

remaining four bytes contain the type of the atom in ASCII text.

The first iteration determines main header information located at offset 0. The
size of the header is extracted (in this case 20) and then the file pointer is moved
accordingly to offset 20. At offset 20 a PICT atom is located and is 6196 bytes in size.
Jumping again to offset 6216 is the main data portion of the MOV file which is of type
“mdat”. All valid MOV files must contain this atom; therefore, it is used as an error
checking mechanism to determine if the file to be extracted is intact. The last atom is of
type “moov”’ which is the standard header for most MOV files, but as shown here can be
included anywhere in the file. Jumping the size of the “moov” atom puts the file pointer
at the end of the file. Summing the size of each atom yields an original file size of

9,275,716 bytes.

Header# | Size Type | Header in Hexadecimal
0 20 pnot | 000 14 70 6e 6f 74

1 6196 PICT | 001834504943 54

2 9266184 | mdat | 0 8d 64 8 6d 64 61 74

3 3316 moov | 00 c 14 6d 6f 6£76
Total 9275716

Table 10. MOV Extraction Algorithm Step-through

7. WMYV (Windows Media Video)

Windows Media Video/Windows Media Audio files use the ASF file format[Ref.
18]. The Advanced Streaming Format (ASF) is an extensible file format designed to
store synchronized multimedia data. It supports data delivery over a wide variety of
networks and protocols while still proving suitable for local playback. ASF supports
advanced multimedia capabilities including extensible media types, component
download, scaleable media types, author-specified stream prioritization, multiple
language support, and extensive bibliographic capabilities, including document and

content management.

30

The invaluable (for us) data structure in the ASF format contains the header
“OxAl DC AB 8C 47 A9”. The structure beginning with this header contains the file
properties object header and the file size (in bytes). Thus it can be used to determine the
EOF. This header is often found within the first 512 bytes of the file and thus processing
often extremely large WMV/WMA files is avoided. See the Figure 7 below for a
description of the ASF format.

Header Object

File Properties Object

Stream Properties Object 1

Stream Properties Object N

<Other header objects>

Data Object

Data Packet 1

Data Packet M

<Other top-level objects>

Index Obiject 1

Index Object K

Simple Index Object 1

Simple Index Object L

Figure 7. ASF File Structure (From: Ref. [18])

31

The basic idea behind the algorithm we use to parse these files is that once the file
header is found ("\x30\x26\xB2\x75\x8E\x66\xCF\x11"), a search for the file properties
header which contains the file size information is executed. This is shown in Table 11
below. Once the file properties object has been located, the file size is located at offset
40 within the object. This information helps determine the end of the file. The trick is
that the file properties object can be located at various offsets throughout the beginning of

the file, which is why a search for the header ID must be used to determine its location.

Name Size (bytes)
Object ID 16
Object Size 8
File ID 16
File Size 8

Creation Date

Data Packets Count

Play Duration

Send Duration

Preroll

Flags

Minimum Data Packet Size
Maximum Data Packet Size
Maximum Bitrate

Table 11. ASF File Properties Object Structure (After: Ref. [18])

MBS |A|oco|co|oo|oo|o

See Table 12 below for a sample header of a WMV file and the import values in
bold. Once the file properties object is found at offset 69, we know from the structure of
the file properties object that the file size is stored at offset 109 in an eight byte value in
little endian format. Thus a simple pointer addition can be used to arrive at the file size

of the WMV.

32

Offset Hexadecimal

0 3026 b2 75 8e 66 cf 11 a6 d9 00 aa 00 62 ce 6¢

16 d3 03 00 00 00 00 00 00 09 00 00 00 01 02 ce 75
32 f8 7b 8d 46 d1 11 8d 82 00 60 97 c¢9 a2 b2 26 00
48 00 00 00 00 00 00 02 00 01 00 90 47 00 00 02 00
64 18 4b 01 00 al dc ab 8c 47 a9 cf 11 8e e4 00 c0

80 0c 20 53 65 68 00 00 00 00 00 00 00 d7 51 ed 1c
96 16 91 Se 4a bd db fe 9e eb 31 3 da 98 1b 6¢ 00

112 00000000003 793ed0c6cl 0175150000

Table 12. ASF Header in Hexadecimal

This added knowledge of the internal data structures has provided us the means to
enhance Foremost so that it can avoid searching through, in many cases, megabytes of
information to determine a files endpoint. Previous versions of Foremost provide no
support for WMV/WMA files. This new ASF capability opens the door to the
multimedia files. This will aide in the prosecution of pornography cases. In addition,
with the increasing popularity of WMA files for pirating music Foremost 1.0 can be a

useful tool in the prosecution of copyright violations.

8. z1p

Zip files often contain multiple embedded files of varying formats; these are
structured in an incremental fashion, followed by a “central directory structure”. ZIP
archives are a standard format for compressing and storing multiple files. Each file
contained within the zip has its own valid ZIP header with its compressed and
uncompressed data sizes stored within it. This information can be exploited to increase

the speed of the extraction of ZIP files.

33

[local file header 1]
[file data 1]
[data descriptor 1]

[local file header n]

[file data n]

[data descriptor n]

[central directory]

[zi p64 end of central directory record]
[zi p64 end of central directory |ocator]
[end of central directory record]

Figure 8. Basic Zip File Structure (From Ref. [19])

The algorithm works incrementally by parsing each local file header, using the
compressed size field located at offset 20. This value is then used to jump to the next
local file header. Once all the files headers have been analyzed then a Boyer Moore
search for the identifier of the end of the central directory record is conducted. Once this
object is located (the structure is given in Table 13) the algorithm then reads the length of
the comment field and jumps to that value plus the size of the object (20 bytes). The
result is the end of the zip file.

Field Description Size
central file header signature 4 bytes
(0x02014b50)

version made by 2 bytes
version needed to extract 2 bytes
general purpose bit flag 2 bytes
compression method 2 bytes
last mod file time 2 bytes
last mod file date 2 bytes
crc-32 4 bytes
compressed size 4 bytes
uncompressed size 4 bytes
filename length 2 bytes
extra field length 2 bytes
file comment length 2 bytes
disk number start 2 bytes
internal file attributes 2 bytes
external file attributes 4 bytes
relative offset of local header 4 bytes

Table 13. ZIP local file header structure (From Ref.[19])

34

The structure an outline of the central directory structure, is given below in Table
14. The header value “0x50 4b 05 06 is used to flag the beginning of the structure at

which point the comment field is extracted to determine the exact EOF.

Field Description Size

end of central dir signature 4 bytes
(0x06054b50)

number of this disk 2 bytes

number of the disk with the 2 bytes

start of the central directory

total number of entries in the 2 bytes

central directory on this disk

total number of entries in the 2 bytes

central directory

size of the central directory 4 bytes

offset of start of central directory | 4 bytes

with respect to the starting disk

number

.ZIP file comment length 2 bytes

.ZIP file comment (variable size)

Table 14. End of Central Directory Object Structure (From Ref.[19])

A sample run through of the algorithm is provided below with a zip archive
containing 9 files with a total size 679168 bytes. As show in the Table 15 each iteration
jumps to the next file in the archive. A total of 10 iterations are required because of the
initial zip file header. Each file size is the summation of the compressed file size (located
at offset 20 within the local file header as show in Table 13), the file name length, the
extra length, and the size of the data structure itself (30 bytes). These ten jumps amount
to a total file size of 678439 bytes, there are some peripheral data structures at the end of
the file so a Boyer Moore search is done to find the end of the central directory structure.
This proves trivial as 729 bytes remain after the jump loop takes place, thus the vast

majority of the search overhead is avoided.

35

Header# Size Header in Hexadecimal

0 65002 504b341400080348730321216
1 27041 504b34140008 03487303249 €2
2 20516 504b 34140008 034873032ed65
3 186436 504b34140008034873032c¢515
4 17202 504b341400080348730322d72
5 259494 504b 3414000 803487303206 0f
6 39482 504b 34140008 03487303233bl
7 55707 504b 34140008 03587303225 6f
8 7143 504b34140008 0358730324777
9 416 504b34140008 03587303221 8b
Total 678439

Table 15. ZIP extraction algorithm step-through

Obvious improvement can be seen implementing this extraction method as
opposed to traditional methods. Much of the searching burden is relieved by the ability
to merely jump to each file objects until only a few small data structures remain to parse.
Comparing this to the previous method which Foremost used is not even worthy of
comparison as the speed of extraction is increased exponentially. Since zip files have no
well defined footer, the examiner was previously forced to attempt to determine where
the file ended by incrementally extracting more of the file and running zip decompression

algorithms against it. This is time consuming and should be avoided if possible.

9. GZ1pP

The GZIP file format is recursive in nature as it is merely processed until the
decompression algorithm completes. No notion of the original data size is given to the
algorithm, therefore in order to fully support the extraction of GZIP files a decompression
algorithm must be incorporated into Foremost. Currently this introduces system
dependent issues and is left as future work. However, a simplified extraction method is

possible with marginally good results.

The GZIP header value is equal to “Ox1f 8B” which is used to identify the file as
a gzip file. This identifier is followed by a one byte value which identifies the
compression method used in the file. CM = 0-7 are reserved. CM = 8 denotes the

"deflate" compression method, which is the one customarily used by gzip. If this

36

information is parsed and verified to be a gzip header with some degree of assurance we
can then jump to the end of the header and search for the string “\x00 \x00 \x00 \x00”.
This works reasonably well as files in the GZIP format do not write blocks of zero’s in
the data portion of the file, however empty sectors on the disc usually contain all zeros.
The fact that this often overshoots the end of the file in most cases is irrelevant since the
decompression algorithm ignores extraneous information, the file will inflate without a

problem.

Offset Hexadecimal

0 1F 8B 08 08 E6 38 BA 3B 0003 69 74 73 34 2D 31
Table 16. GZIP Header in Hexadecimal

The GZIP file format is most common on a UNIX platform and is therefore a
valuable commodity to open source tools that analyze such environments. This algorithm
while still a “best effort” provides support for a format that was not supported in older
versions of Foremost. The method is still the same in terms of using basic header and
footer information to deduce the file size. However, the error checking capabilities in
terms of checking to see if the header contains reasonable values significantly reduces the

number of false positives generated by the program.

10. RIFF

The RIFF file structure is used by various file formats, most notably AVI
(Audio/Video Interleaved) and WAV. The WAV File Format is a file format for storing
digital audio (waveform) data. This format is very popular as it is most commonly used
in commercial music cd’s. It is also widely used in professional programs that process
digital audio waveforms. WAVE files are often just RIFF files with a single "WAVE"
chunk which consists of two sub-chunks -- a "fmt" chunk specifying the data format and
a "data" chunk containing the actual sample data [Ref. 20]. Table 17 below shows a
sample WAV header stored in the RIFF file structure. The first four bytes indicate the
RIFF file structure, followed by the file size stored in little endian, and finally the WAV
signature indicating that this is indeed a WAYV file within the RIFF structure.

37

Offset Hexadecimal Ascii

00 52 4946 46 B0 A3 01 00 57 41 56 45 66 6D 74 20 RIFF°£.. WAVEfmt
16 10 00 00 00 01 00 02 00 44 AC000010B10200 | D—..+..
32 04 00 10 00

Table 17. Wave File Header

The Audio/Video Interleaved (AVI) file format is a RIFF file specification used
with applications that capture, edit, and playback audio/video sequences. In general, AVI
files contain multiple streams of different types of data. Most AVI sequences will use
both audio and video streams[Ref. 21]. The AVI RIFF form is identified by the four-
character code “AVI ” as noted below in Table 18. All AVI files include two mandatory
LIST chunks. These chunks define the format of the streams and stream data and are also

used to provide an error checking mechanism to the extraction function.

Offset Hexadecimal Ascii

00 524946 46 A E7 86 09 41 56 49 20 4C 49 53 54 RIFFS(;T.AVI LIST
16 26 01 00 00 68 64 72 6C 61 76 69 68 38 00 00 00 &...hdrlavih8...

32 6B 04 01 00 C3 DA 34 00 00 00 00 00 10 08 00 00 k. AU4.......

Table 18. AVI File Header

Extracting an AVI/WAV file is trivial because the file size is stored in the RIFF
file format at offset 4. Thus minimal error checking is required to ensure that the file is
indeed an AVI or a WAV before it is extracted. This type of error checking includes, in
the case of an AVI, the verification that the header contains the LIST chunk a mandatory

portion the file specification.

This algorithm is an obvious improvement over the previous version of Foremost
as WAV files were not supported and AVI files do not contain valid footers, therefore as
we have seen previously the burden is then needlessly placed upon the examiner. Also
the speed of the extraction function is a major enhancement as only the first block of data

needs to be analyzed to determine the actual file size.
38

11. HTML

Extracting HTML (Hyper Text Markup Language) files requires the challenging
tasks of building heuristics to look at file content as opposed to its data structures.
HTML files are fairly intuitive to extract as they have a defined footer. This is not the
case with most other ASCII files. The main problem in dealing with HTML is the
generation of false positives. To deal with this the new extraction algorithm checks the
first block of the file to ensure it is indeed ASCII printable, this greatly reduces the
number of false positives without checking the entire file byte by byte. With the advent
of XML and CGI scripts, it is not uncommon to see HTML headers within files that are
not HTML at all. Some would argue that these CGI scripts and other binary files are
valuable evidence, thus the traditional method of extraction based on strictly

header/footer data is available via the configuration file of Foremost.

This method of error detection is somewhat slower than just looking at the
header/footer pair. However, much time is saved by not having to sift through files
which do not appear to be HTML, thus increasing the productivity of the examiner.
Through experimentation it was found that often small portions of CGI scripts are
extracted that only contain the “<htmI>" and “</htmI>" tags embedded within the binary
values. The utility of such files is minimal and thus this algorithm attempts to rectify this

problem.

12. CPP (C/C++ Source Code)

Source code detection could be a useful weapon in the prosecution of hackers
because Foremost could potentially recover some source code that a hacker compiled on
a “victim’s machine”. The detection of C source code is an intriguing task as no well
defined header or footer exists for these types of ASCII text files. Thus a system of
markers and keyword searches is the best method for building a system which can
intelligently extract these files. The fundamental marker that the CPP extraction
algorithm uses is the “#include” statement which must be in source code if it wishes to
use any libraries whatsoever. However this isn’t fool proof; as a C file may contain only
function definitions and be included or linked with another file that contains the #include

statement. In addition many local exploits are short and usually only consist of a single
39

source file. This is a limitation that is accepted as this extraction method can be termed

as a “best effort” method.

Once the first marker is found then the file is scanned to until a non ASCII
printable character is reached. With this new buffer of information a series of keywords
is then searched for to give added confidence that the data is in fact source code. Other
keywords include “int ”, “char ”, and “#define ”, these strings help build a “score” for the
data and if the file meets the minimum score threshold then it is extracted and deemed

source code. This method works reasonably well but a more sophisticated system must

be implemented to “catch all” of these types of files.

B. SEARCH ALGORITHMS

1. Boyer Moore Description

The Boyer-Moore searching algorithm, described in R. S. Boyer and J. S. Moore's
1977 paper “A Fast String Searching Algorithm” [Ref. 22] is among the best ways
known for finding a substring in a search space. Using their method it is possible to
search a data space for a known pattern without having to examine all the characters in
the search space. This is why it was chosen as the fundamental searching algorithm
employed by Foremost. Boyer-Moore search algorithms are based on two search

heuristics.

The first of these rules tell us how to search for substrings without repeats in a
data space. Keep a pointer into the data space at the current search location; initialize this
pointer to the start of the space plus #n - 1 characters where # is the number of characters
in the target string. Compare the character in the data space pointed to by this pointer
with the characters in the target string. If this character does not occur in the target string,
advance the pointer by n places. If the character does occur in the target string, advance
the pointer by n - p places where p is the position that the character in question first
occurs in the target string. This process repeats until either a match is found or we have

shifted past the end of the search space.

The second search heuristic applies to searching for targets with repeating

patterns. Using only the rules set forth in the first heuristic will work for targets with

40

repeating patterns, but the search will not be as efficient as possible. By examining partial
matches and repeats in the target string, though, it is possible to make more drastic
pointer jumps and arrive at the match more rapidly. This type of jump is based on a table

which is computed before the search begins.

Figures 9 & 10 show the improvements Boyer-Moore makes when compared with
brute force search methods. Notice that Boyer-Moore completes the search in less than

half the comparisons of the conventional methods.

For any commands
compare {a to F})
and
| compare {(a to o)
and
| compare (a to r)
and
| compare {(a to space)
and
111 compare {(a to a), (n to n) and (d to v)
and
| compare (a to n)
and
| compare {(a to v)
and
| compare {(a to space)
and
| compare (a to C)
and
| compare {(a to o)
and
| compare {(a to m)
and
| compare (a to m)
and
111 compare {(a to a), (o to n) and {(d to 4d)
and

Total of 17 comparisons.

Figure 9. Brute Force Search (From Ref. [23])

For any commands
compare {(d to r)

and
| conpare (d to n)
and
| conpare (d to y)
and
| conpare (d to o)
and
| conpare (d to a)
and
| 1] conpare (d to d), (n to n) and {(a to a)
and

Total of 8 comparisons.
Figure 10. Boyer Moore Search (From Ref. [23])

41

2. Algorithm Analysis

An analysis of Boyer-Moore shows that vast improvements can be achieved
versus the brute force O(n"2) method. M is equal to the size of the search space and n is
equal to the size of the string. The preprocessing phase has O(m+c) time and space
complexity, the searching phase has O(mn) time complexity, 3*n text character
comparisons in the worst case when searching for a non periodic pattern, and O(n / m)
best case performance[Ref. 22]. This added performance is the reason this algorithm is
the most popular for performing text searches in many editors, but it also suits the disc

carving purpose because it can be adapted to perform hexadecimal searches as well.

C. INDIRECT BLOCKS

1. UNIX File System Overview

As with other operating systems, files are not necessarily written to disk
contiguously by UNIX file-systems. A file may be stored in several different blocks,
seemingly randomly chosen; however, the blocks do generally adhere to a semi-
contiguous structure. UNIX creates a data structure called an inode to maintain all
relevant information about a file, including which disc blocks the file has been stored on.
Each inode is stored sequentially in an array, so the inode itself does not affect its
corresponding file size. The file system is retrieved during the boot process. The boot
process contains a hard coded inode number, which represents a file location containing a

boot block in memory and inode list [Ref. 24].

UNIX deals with fragmentation by redirecting its inodes. It creates "indirect
blocks" for those inodes pointing to large files, where the file is stored in non-contiguous
blocks on a disk. Those indirect blocks contain the addresses of the blocks containing the

file, and the inode in turn contains the address of that indirect block.

2. Indirect Block Detection
Indirect block detection is an invaluable tool in successful extraction of files from

a UNIX/LINUX file system. Indirect blocks are used when a file consists of more than

42

twelve blocks and the file system needs to store additional information so that it can keep
track of all the blocks allocated to the file. The ability to detect indirect blocks, use the
information stored in those blocks greatly increases the detection and extraction
capabilities in UNIX file systems. Figure 11 depicts a screenshot from the debugfs
program which shows the blocks that are allocated to a Power Point file. Notice that the
file is larger than 12 blocks, thus it requires the usage of an indirect block (IND) located
at offset 8525813. In this case, as is often the case, IND is contiguous with the rest of the

blocks; however for extraction purposes it must be detected and removed.

debugfs: stat intro.ppt

Inode: 4156452 Type: regqular Mode: 0755 Flags: 0x0O Generation: 3244513

s

T=ser: 1] Group: 1] dize: 98816

File A4CL: 0O Directory ACL: 0

Links: 1 Elockcount: 203

Framment: Address: 0 Mamber: 0O Size: 0O
ctime: 0x41945dd4 -- Thu Now 11 Z22:53:08 Z004
atime: 0Oxdlalefif -- Sun Now 21 11:41:19 2004
mtime: 0x405d49b0 -- Mon Apr 26 10:41:04 2004
BLOCES:

[0-11):8525801-8525812, (IND):8525813, (l2-24):8525814-8525826
TOTAL: Z6

debugfs: I

Figure 11. Debugfs Screenshot

Using the UNIX program dd, we can view the structure of the indirect block.
Figure 12 shows the actual indirect block used in the example Power Point file. Notice
that each 4 byte chunk is the location of the remaining blocks allocated to the file. The
file system uses this information in order to rebuild the file before giving it to the
operating system. The fact that these blocks are usually increasing and fairly close
together can be exploited by a heuristic function which detects and removes indirect
blocks. The algorithm works by first analyzing the structure of the indirect block to
verify that it is not simply part of the file. Verification of increasing offsets followed by a
variable amount of 0’s occurs. Then the differences between each offset is checked to
determine whether they exceed a given threshold value to add assurance that the block

under study is an indirect block. If a difference exceeds one, meaning that the offsets are
43

not contiguous then following logic ensues in an attempt to rebuild the file before it is

handed off to the extraction algorithms.

aooooooo EE 17 82 00 F7 17 82 00 Fd 17 82 00 F2 17 82 00 ...uvnvnncnnnnns
gooooolo Fia 17 82 00 FE 17 82 00 FC 17 82 00 FD 17 82 00ueenennnns
aooooozo FE 17 Gz 00 FF 17 G2 00 00 13 82 00 01 13 82 00e.ueenennnns
aoooooso 02 13 8z 00 00 00 00 00 00 00 00 00 00 00 00 00 ..eeeeueennnnnns
aooooogo oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. eeeneennnnnns
ooooooso o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... eeeeenennnns
aoooooan oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00eeeeenenns
aoooooTa oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. eeeneennnnnns
ooooooso o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... eeeeenennnns
aooooosa oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00eeeeenenns
Qooo0o0aD oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. eeeneennnnnns
0o0o0o00oED o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... eeeeenennnns
goooooco oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00eeeeenenns
aooooomnao oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. eeeneennnnnns
aoooooED oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. eeeneennnnnns
ooooooFo o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... eeeeenennnns
aooooloo oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00eeeeenenns
goooollo oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. eeeneennnnnns
ooooolzo o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... eeeeenennnns
aoooo13o oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00eeeeenenns
aoooo14o oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .. eeeneennnnnns
ooooolso o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ... eeeeenennnns
ooooolan oo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00eeeeenenns
--- ind.dd -—0=0/0x1000--————-——————————

Figure 12. Indirect Block Screenshot

One of the main problems with indirect block detection is the fact that often tools
like Foremost are used on fragments of a disc. These may include just unallocated space,
slack space, or maybe only a portion of a valid file-system is recoverable. In any case the
offsets located in the indirect block cannot be trusted as they only hold true if the entire
file-system is intact. Therefore, some assumptions must be made in order to attempt the
reconstruction of non-contiguous files that contain indirect blocks. The first offset listed
in the indirect block is assumed to be one more than that of the indirect block itself
therefore all other offsets can be used relative to that one. Essentially the heuristic uses
the remaining offsets as offsets from the first block listed in the indirect block. This
works reasonably well as many indirect blocks that are not contiguous usually only
contain one or two blocks that are not in order. Thus as long as the first block listed is

contiguous, the algorithm performs with great success.

Another problem is the fact that the block size isn’t the same across various UNIX
file sizes. Thus the most common block size of 4096 bytes is tried first to see if the block

44

meets the detection algorithm’s specifications. Failing that, then other common block
sizes must be tried in order to attempt to determine what the actual block size is. This
may also be accomplished by having a user defined block size, if the user knows the

specific file system used, such as UFS, EXT2, or EXT3.

File system vendors often trump security for speed. This is why files are often not
overwritten when they are deleted but merely have their meta-data moved to unallocated
space. The EXTS3 file system actually does delete the inodes and indirect blocks of a file.
Some may argue that this trend negates the need for indirect block detection. But the
heuristic if often useful in the case where only a portion of the file-system may be

recoverable, thus leaving some indirect blocks in tact.

No data carving tool has addressed the need for indirect block detection. On
UNIX file-systems the advantages are huge as, files such as office documents,
multimedia, archive, and even images routinely use more than 12 blocks, thus extraction
algorithms will fail. As operating systems such as Linux increase in popularity the use of
EXT2/EXT3 file-systems will increase so and so will the need for these types of
algorithms which can interpret the data stored in indirect blocks. See the indirect block
section in chapter four for examples of how indirect block detection improves successful

extraction of various files.

45

THIS PAGE INTENTIONALLY LEFT BLANK

46

IV. EXPERIMENTAL RESULTS

A. OVERVIEW

The tools used in this comparison include FTK, ILOOK, the original version of
Foremost, and the modifications to Foremost presented in this paper. For testing
purposes the implementation of the tool described in this paper will be referred to as

Foremost 1.0.

Version 1.5 of FTK, the version current at the writing of this document, supports
the following file formats: BMP, GIF, JPEG, EMF, PDF, HTML, AOL, and OLE. The
capabilities of this product performed very well in experimental test cases. However,
FTK only allows for carving of unallocated space thus it will not be used in the test cases
as it wouldn’t provide a fair comparison with products that analyze an entire disc image.

However, the tool seems to use an approach similar to the one described in this paper.

ILOOK supports far more file formats than FTK but with varying success. It
even provides multiple versions of extraction algorithms for the same file format. This is
mainly because ILOOK can incorporate new file signatures into its data carving
mechanism. For example, ILOOK contains three different extraction methods for
carving JPEG files. Testing these algorithms showed that they perform relatively well
but they do not catch everything and they perform at varying speeds. Overall this tool
performs well but it definitely emphasizes quantity of output over quality. This can

potentially become burdensome for an analyst.

B. NTFS

Brian Carrier, the main Sleuthkit developer, created a 10MB test image for testing
forensic tools ability to extract jpeg data. The image is an NTFS partition containing the
files listed in Table 19 below. Through experimentation it was discovered that NTFS
does a very good job of storing files in contiguous memory blocks. This makes the disc
carving process much easier than dealing with the indirect blocks of UNIX files systems.
The MD5 of the image is “9bdb9c76b80e90d155806alfc7846db5” and it can be

downloaded at http://dftt.sourceforge.net/test8/. This image was used because of its

47

availability and to demonstrate the utility of the JPEG algorithm described previously in

addition to ZIP, GZIP, and OLE extraction

Name MDS5S
alloc\filel |75b8d00568815a36

Num

.1 P9 c3809b46f c84babd
) all oc\fil e2 |de5d831533399313
. dat 71719f 4e5c924eba
3 invalid\fil 1ba4e91591f 0541e
e3.] pg da255ee26f 7533bc
4 invalid\fil |c8de721102617158
ed.jpg e8492121bdad3711
5 invalid\fil 86f14fc525648c39
e5.rtf d878829f 288c0543
; qellgag;ee. af d55222024a4e22
1 P9 - f 7f 5232665320763

Entry #32
. gEIZXL;;e7' 0c452c5800f cf a7c
fm- 66027ae89c4f 068a

Entry #31
2 archive\fil |d41b56e0a9f 84eb?2
e8.zip 825e73c24cedd963
files. i f 9956284a89156ef
1P9 '5967b49eced9dibl
9 archive\fil |73c3029066aee941
€9. boo 6ab5aeb98a5c55321
fFileg. i c5a6917669¢c77d20
1P9 £ 30ech39d389eb7d
10 archive\fil |d4f8cf643141f0c2
el0.tar.gz 911c539750e18ef 2
filel10. i c476a66¢ccdc2796b
P9 4 6f 8e27273dd788
1 m sc\filell f407ab92da959c7a
. dat b03292cf e596a99d
12 m sc\filel2 61c0b55639e52dlc
. doc e82aba834ada2bab
13 m sc\filel3 9b787e63e3b64562
.dll:here 730c5aecaablelf 8

Table 19.

capabilities.

Note

A JPEG file with a JPEG extension
A JPEG file with a non-JPEG extension

A random file with a JPEG extension

A random file with 0xffd8 as the first two bytes (the
JPEG header signature). There is no JPEG footer or
other header data.

A random file with the 0xffd8 signature value in
several locations inside of the file.

A deleted JPEG file with a JPEG extension.

A deleted JPEG file with a non-JPEG extension.

A ZIP file with a ZIP extension and a JPEG picture
named f i | €8. j pg inside of it.

A JPEG file that is inside of a ZIP file with a ZIP
extension.

A ZIP file with a non-ZIP extension and a JPEG
picture named f i | €9. j pg inside of it.

A JPEG file that is inside of a ZIP file with a non-ZIP
extension.

A gzipped tar file that contains a JPEG picture named
filelO.jpg.

A JPEG file that is inside of a gzipped tar file.

A file with 1572 bytes of random data and then a JPEG
picture. This was created using the '+' option in the
Windows copy.exe tool.

A Word document with the JPEG picture inside of it.

A JPEG file in an Alternate Data Stream.

Brian Carriers JPEG test image files (From Ref. [25])

After running ILOOK against the image the following files were extracted. Note

that since the image is a valid NTFS partition ILOOK has the capability to mount the
48

image and extract files via the meta-data. Note that this is not relevant to the disc carving
capability of the tool. ILOOK uses a customizable database of file signatures to “carv”
data. In essence it takes the same approach as Foremost 0.69 in that only header and
footer data seems to be analyzed. Although this cannot be verified without the source
code it seems that ILOOK uses a file size limit of 102,400 bytes for JPEG which explains

why all files greater than that threshold were truncated.

Num Name MD5 Size Note
f 41b83ecabe49a70 102,400

1 530.jpg 752dca82020f 2e3b This file is truncated

2 1066.jpg ad%gg?iggggfﬁg?%z 102,400 This file has been truncated

3 1705 jpg asl 3;2?22;32(11322(11 >d 102,400 Truncated Picture #3

4 6688.jpg bgszéig?gggégggg 6b2 102,400 This file has been truncated

5 10056.jpg daciﬁiﬁ?ﬁiﬁ?ﬁ 6de 126,112 Valid JPEG #2

6 10810.zip a795bs34c11)1864fje73a9029f4f7f5 335,360 Corrupted

7 11466.zip 7d962273§§;§58 (z 8254634 294,400 Valid archive containing picture #6

Table 20. ILOOK results from NTFS sample image

After running the traditional version of Foremost (0.69) the following files were
extracted (See Table 21 below). The older version of Foremost performed reasonably
well against an image consisting mostly of simple jpeg files. In addition since only one
OLE document was included in the image Foremost 0.69 was able to extract the Word
Document using its NEXT search capability. The NEXT search capability allows
Foremost to use the header as the footer, this approach relies on the fact that OLE
documents are often written in relatively close memory space. Since they are sometimes
written in groups the header of the NEXT document can be used to determine the EOF of
the current document. This method works pretty well for small images but severely

degrades as images grow and documents become more spread out.

49

Num Name MD5 Size Note
_ [75b8d00568815a36¢380 | 274260 Valid picture #1
11 00000000.jpg 9b46fe84babd (Matches MD5)
. 0c452¢5800fcfa7¢66027 | 326859 Valid picture #4
2 00000001.jpg ae89c4f068a (Matches MD5)
. afd55222024a4e22f7f5a | 175630 Valid picture #3
3| 00000002jpg 32665320763 (Matches MDS5)
4 | 00000003jpg 1S3 92;23?22‘53;569"3“ 1681986 Corrupted picture #10
_ |de5d8315333993137171 | 26081 Valid picture #2
5| 00000004.jpg 9f4e5c924cha (Matches MDS)
6 | 00000005jpg > 09‘2133%(2)2%?379 S6ef | 271181 Valid picture #8
7 | 00000006jpz > 6dfg§§g§§§gzg4b4z 110373 Valid picture #9
8 00000007.doc 4bf2§5662fg(e)§ié)§6f461§0200 154624 Word doc containing picture #9
9 | 00000008.doc 3“@32?1%2%?5”” 3696640 Tnvalid Word Document

Table 21.

Foremost (0.69) results from NTFS sample image

Results from Foremost 1.0 are provided in Table 22 below. Note the only file that
could not be fully extracted is the one located in the alternate data stream as the data
portion of the file is not contiguous. The fact that 7 of 11 files matched their original
mdS5 hash shows the precision that tailored extraction heuristics offers the disc carving
arena. This is an obvious improvement over the 4 files matched by Foremost 0.69

matched and the single md5 matched by ILOOK.

50

Num Name
1 00530.jpg
2 01066.jpg
3 01705.jpg
4 06688.jpg
5 10056.jpg
6 10405.gz
7 10810.zip
8 11466.zip
9 12044.jpg
10 12574.doc
11 12583.jpg

Table 22.
C. FAT32

The FAT32 image used is a custom 62MB image I created using the mkfs tool. It
was created to display the inadequacies of the current data carving tools and to show how
some simple methods can be used to improve upon them. This image can be downloaded
from Brian Carriers forensic testing site at http://dftt.sourceforge.net/. The drive was also
overwritten with zero’s to ensure that no other data would be present other than the test
images. The first block of the image is also destroyed so that it cannot be mounted.
Listed below in Table 23 are the files contained in the image along with their associated

attributes and description. These provide the data that can be used for comparison among

MDS

75b8d00568815a36¢380
9b46fc84babd

0c452¢5800fcfa7c¢66027
ae89c¢4f068a

afd55222024a4e22f7f5a
32665320763

7£c3954d980a643¢e9¢eafd
62e053¢b075

de5d8315333993137171
9f4e5¢c924eba

d4£8cf64314110c2911c5
39750e18ef2

d41b56e0a9184eb2825¢
73c24cedd963

73¢3029066aee9416a5a
eb98a5¢55321

35c¢9da622659465956¢f
2d210c89b107

0572c54544b657477eeb
b25df6cefl2c

936d202fbedecbe64b42
¢5f3d03233e5

Size
274260

326859

175630

1681986

26081

207272

335371

294124

271181

132096

110373

Note

Valid picture #1
(Matches MD5)

Valid picture #4
(Matches MDS5)

Valid picture #3
(Matches MDS5)
Corrupted picture #10
Valid picture #2
(Matches MD5)

tar ball containing picture #7
(Matches MD5)

Archive containing picture #5
(Matches MD5)

Archive containing picture #6
(Matches MD5)

Valid picture #8
Word doc containing picture #9

Valid picture #9

Foremost (1.0) results from NTFS sample image

the different programs.

51

Num Name MD5 Size Note
1 2003_docunent . doc ggigiggggggggmf 1969 19968 A Valid DOC file
. 7629b89adade055f 6783 318895 .
2 enterprise. wav dc1773274215 A valid WAV file
s lhaxora. 84eldceac2eb127f ef 5b 24367 A Invalid JPEG with
-1 P9 f dchOeae324b only I header byte
corrupted.
7917baf 0219645af ef 8b 23040 .
4 hol ly. xl's 381570c41211 A valid XLS file
5 lin_1.2. pdf %ggigggggégn%alf 5 1399508 A linearized PDF
. 5b3e806e8c9c06a475cd 122434 . .
6 nlin_14. pdf 45bf 821af 709 A non-linearized PDF
. 37a49f 97ed279832cd4f 29885 .
7 paul . pg 7bd002c826a2 A valid jpeg
. 6c9859e5121f f 54d5d62 444314 . .
8 punpki n. j pg 98f 65f Obf 3b3 A valid EXIF jpeg
. d83428b8742a075b57b0 (99298 .
9 shark.j pg dca24cd297c4 A valid JPEG
. d25f b845e6a41395adae 5498 .
10 sml. gi f dsbd14db7bf 2 A valid GIF
5328d2b066f 428ea95b2 550653 .
11 surf. nov 793849ab97f a A valid MOV
f f 085d0c4d0e0f dc8f 34 (1036994 .
12 sur f . wnv 27db68e26266 A valid WMV
13 |test.ppt Ig;ﬁgﬁg?gggng 4bb76c 111264 A deleted PPT
. c0be59d49b7ee0f dc492 78899 .
14 wwor d60t . zi p d2df 32f 2¢6c6 A valid ZIP
63c0c6986¢f 0ad446ch54 (8037267
15 donoper s. wnv b0ac65a921a5 A deleted wmv
Table 23. Sample FAT32 test image

The results from Foremost version (0.69) are shown below in Table 24. Notice
that version 0.69 extracted 6 out of 14 valid files, but it also generated 5 corrupted files or
false positives. Two jpeg images were missed because of a variable JPEG signature
(EXIF) that version 0.69 doesn’t support. In addition the only reason OLE documents
were successfully extracted is because they can contain garbage data at the end of the
document hence the large file sizes that 0.69 extracted. This is why 00000010.doc will

open successfully however it is over 1000 times as large as the original file size of 11,264

52

(test.ppt) bytes. The same holds for the 00000002.doc file which was originally only
19,968 bytes in size, but was ballooned to 8,402,944 bytes by 0.69! This method may be

satisfactory for small files but this type of extraneous extraction really slows down the

program when analyzing larger images. Version 0.69 also extracted a JPEG that had

been purposely corrupted to illustrate such inadequacies. Methods such as these rely on

the examiner to determine what files are readable/corrupted or not. In addition Foremost

0.69 cannot make a distinction between Word Documents and other OLE files thus it

names any OLE file as it were a word document.

Num Name

1 00000000.jpg

2| 00000001.jpg

3 00000002.doc

4 00000003.doc

5 00000004.pdf

6 00000005.gif

7 | 00000006.jpg

8 | 00000007.jpg

9 | 00000008.jpg

10 00000009.mov

11 00000010.doc

Table 24.

MD5

84eldceac2ebl27fef5bf
dcb0Oeae324b

37a49197ed279832cd4f
7bd002c826a2

a4aa85035d929bc5a9bb
b2{2b5e1£2d0

32b48b4fd63d7ebae885
f31cc6491412

1c418da888e2a032afdf7
7b2157d3074

a80122dbb804f919b1fb
688acf57782f

7e0b420a2ea2258b8743
b9abef7c6946

635ed8b379942f6cdasSe
6c809c5218al

635ed8b379942f6¢cdase
6¢809¢52f8al

b8¢c798ce4204018e35f8
e7e2e749a73d

bc20b8af9754d9b0d615
88fdd9fdbalc

Size
24367

29885

8402944

3719168

5000000

63677

3051

2655

2655

4000000

12500000

Note
Corrupted JPEG

Valid JPEG (paul.jpg)
(matches md5)

Valid DOC (2003 _document.doc)
Valid XLS (stats.xIs)
Invalid PDF
Valid GIF (sm1.gif)
Invalid JPG
Thumbnail of shark.jpg
Thumbnail of shark.jpg
Invalid MOV

Valid PPT (test.ppt)

Foremost (0.69) results from FAT32 sample image

The results from Foremost (1.0) are included in Table 25 below. Version 1.0

successfully recovered all 14 valid files and ignores the corrupted JPEG file (haxor2.jpg).

This method also reduces the amount of redundant processing that version 0.69 does and

speeds up the processing exponentially. 10 out of 14 files match their original mdSsum

53

and the rest are no more than a few sectors off from their original size. This adds weight

in a forensic context as the evidence is more precise than version 0.69 which only

matches 1 out of 14 md5 hashes.

Num

10

11

12

13

14

Name

19717 jpg
19777.jpg
20645.jpg
20841.gif
321.wmv
21929.wmv
20853.mov

16021.wav

281.doc

16693 xls
23957.ppt
23981.zip
16741.pdf

19477.pdf

Table 25.

MDS

37a49197ed279832cd4f
7bd002c826a2

6c9859e51211154d5d62
98165f0bf3b3

d83428b8742a075b57b0
dc424cd297c4

d25fb845e6a41395adae
d8bd14db7bf2

63c0c6986¢cf0ad46cb54
bOac65a921a5

ff085d0c4d0e0fdc81342
7db68e26266

5328d2b066428ea95b2
793849ab97fa

4020b55670015ee50672
260efd138aff

5ae5c¢d40c3d07d5df554
b2030a001ebd

a9bba638866a7fSbadba
db727a1628c9

da30aae8b23194e11302
20d47ceddfed

c0be59d49b7ee0fdc492
d2df32f2¢6¢6

€026ec863410725balf5
765a1874800d

5b3e806e8c9c06a475¢cd
45b£821af709

Size
29885

444314

99298

5498

8037267

1036994

550653

318886

20992

25088

13312

78899

1399508

122434

Note

Valid JPEG (paul.jpg)
(Matches md5)

Valid JPEG (pumpkin.jpg)
(Matches md5)

Valid JPEG (shark.jpg)
(Matches md5)

Valid GIF (sml.gif)
(Matches mdS)

Valid WMV (domopers.wmv)
(Matches md5)

Valid WMV (surf.wmv)
(Matches md5)

Valid MOV (surf.mov)
(Matches md5)
Valid WAV (enterprise.wav)

Valid Word Document
(2003 _document.doc)

Valid XLS (stats.xls)

Valid PPT (test.ppt)

A valid ZIP file(wword60t.zip)
(Matches md5)

A valid PDF (lin_1.2.pdf)
(Matches md5)

A valid PDF (nl i n_14. pdf)
(Matches md5)

Foremost (1.0) results from FAT32 sample image

54

D. EXT2/EXT3
The EXT2 image studied is a 62MB image I created from a USB thumb drive.

This image along with its hash is available via the internet at http://dftt.sourceforge.net/.

The drive was formatted using the mkfs program so that indirect block detection could be

evaluated. After the image was constructed the meta data pertaining to mounting the

image was corrupted to ensure strict carving methods would be used to extract data. The

default block size chosen by the mkfs program is 1024, therefore Foremost 1.0 should

detect single indirect blocks and remove them. Many of the files included in the image

are larger than 12,168 bytes, thus they require at least a single indirect block.

Num Name

1 haxor2.bmp

2 jimmy.doc

3 jn.jpg

4 lin_test.pdf

5 |main_dive.jpg

6 n_lin_ss.pdf

7 blogo.gif
8 sherry.jpg
9 stats.xls
10 test.ppt

MDS5S

9633fe6b9ef2alas5edd6de
70d22c0f5

2131914dd74819df42d1d9%4
1¢7275¢c16

270a0a913fa9603db8121fd
f78d63aca

1c64456776075d1f0a662¢
1f6c09¢340

937846adb96773ee25fcb34
821230976

97be95ed3e710b63bc75€5
¢0775062d9

5e10b2176016885a85bffcO
742142524

3834e72d2ee266ccfb9733d
716b8912b

6351df9¢1543c41c3df8eea
63e06a219

99941c¢129cc8ctbadcl5¢55
086982efc

Table 26.

Size Note Blocks (bs=1024)
163878 (0-11):2581-2592, (IND):2593, (12-
A deleted BMP 160):2594-2742
12800 | s qieed DOC | (0-11:2743-2754, (IND):2755, (12):2756
28949 (0-11):2757-2768, (IND):2769, (12-28):2770-
A valid JPG 2786
26618 Avalidppp | (0-11):2787-2798, (IND):2799, (12-25):2800-
2813
8463 A valid jpeg (0-8):2814-2822
734652 (0-11):2823-2834, (IND):2835, (12-
. 267):2836-3091, (DIND):3092, (IND):3093,
A valid pdf (268-523):3094-
3349, (IND):3350, (524-717):3351-3544
18663 Avalidgif (071125612572, (IND):2573, (12-18):2574-
2580
133249 . (0-11):3545-3556, (IND):3557, (12-
A valid JPEG 130):3558-3676
15360 Avalid xLs | (0-11:3677-3688, (IND):3689, (12-14):3690-
3692
17408 Avaligpp | (0-11):3693-3704, (IND):3705, (12-16):3706-
3710
Sample EXT2 Image

The results from Foremost version (0.69) are shown in Table 27 below. The only

file that was successfully extracted by version 0.69 was smaller than 12,168 bytes and

thus didn’t include any indirect blocks.

55

Only one of the file matched its original

MDS5SUM hash. 4 of the 9 files extracted are at least partially viewable. Most notably
00000001 .jpg and 00000000.gif still contain their indirect blocks and thus the latter
halves of the images are not-viewable. Also note that only the thumbnail of sherry.jpg
was extracted because version 0.69 doesn’t adequately recognize an EXIF JPEG. This

example demonstrates the inadequacies of Foremost (0.69) in analyzing a UNIX file-

system.

Num Name MD5 Size Note
1| 00000000.gif 03632’&55;3;533:6&51’0 19687 Partially corrupted GIF (blogo.gif)
2 00000001 .jpg 305b;2§£5§:g?29§38 >dd 29973 Partially corrupted JPEG (jn.jpg)
5| ooooonoaipg | TEGIETTSEE2SHe |84 A Valid(ﬁ’igl(érsleﬁr;&d)ive.jpg)
4 | 00000003.jpg 4b4a45f§£3§31§;8§ﬂbf4 7043 Corrupted JPEG
5| 00000004.jpg d21f5gj62?f§78§§2f()dbf2 4905 Thumbnail of (sherry.jpg)
6 | 00000005.doc 21012;&1?;};?3;68‘1& 936416 An invalid DOC
7 | 00000006.doc 936643;(?;232213539 16384 An invalid XLS
8 | 00000007.doc 5241%‘;‘;’19’;‘1:?2‘133261 d677 | 12500000 An invalid PPT
9 | 00000007.pdf 057323%?5;332;“” 5000000 An invalid PDF

Table 27. Foremost (0.69) results from EXT2 sample image

The results from Foremost (1.0) are included below in Table 28. The only real
problem version 1.0 ran into is the fact that n_lin_ss.pdf requires a double indirect block
which is not supported in this version. This extension is left as future work. 5 out of 10
MDS5SUMS matched and all of the files were at least partially viewable as compared to
the previous version where only 4 files were even partially discernable and only 1
MD5SUM matched. Also note that over half of the files were not readable thus this

causes the examiner for time to manually extract files.

56

Num Name MD5 Size Note

: 514 270202913£a9603db812 | 28949 Valid JPEG (jn.jpg)
Jpg 1fdf78d63aca (matches md5)
) 5626.; 937846adb96773ee25fc 8463 Valid JPEG (main_dive.jpg)
Jpg 534821230976 (matches mds5)
3 7088.i 432a6017f18abca995e0 | 133249 Valid JPEG (sherry.jpg)
Jpg e708alff18b6 (matches md5)
4 5122 oif 5e10b2176016885a85bf | 18663 Valid GIF (blogo.gif)
£ fc074a142524 (matches md5)
5 5160.bm 19633fe6b9ef2a0aSedd6 | 163878 Valid BMP (haxor2.bmp)
-omp de70d22¢0f5 (matches md5)
b930aaee0c478ad69bc8 | 14848 Valid DOC (jimmy.doc)
6 3482.doc 63349b7b899d
dad72c2effb3aa93c3845 | 17408 Valid XLS (stats.xls)
! 7344.xs fbc05de6622
068114007cde9e94e5aa | 19456 A valid PPT (test.ppt)
8 7374.ppt 42360c79¢65
9 5566.pdf 1¢64456776075d1f0a66 | 26618 A valid PDF (lin_test.pdf)
P 2e1f6c09e340 (matches md5)
10 5636.pdf 20483118a0c70844a126 | 738748 Partially corrupted PDF(n_lin_ss.pdf)

d961fca3792b
Table 28. Foremost (1.0) results from EXT2 sample image

This test case shows the case where adding 50 lines of code to a program can
dramatically increase the extraction functionality of a given tool. Granted that indirect
block detection is not an exact science, but it does provide more useful data when
extracting files from a UNIX file system. Sample source code is provided for indirect

block detection in Appendix A.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

V. CONCLUSION

A. SUMMARY

With some study of file format specifications and reverse engineering of propriety
formats, existing disc carving tools can be vastly improved. In addition through
comparison with closed source products this paper has shown that open source tools can
perform just as well, if not better than commercial forensic suites. The methods
outlined in this paper can provide a file system independent program that can take
advantage of file system specific information such as indirect block detection but not use

them as a crutch.

Experimental results provided in this paper as well as those performed on real
world machines have shown the usefulness of developing more sophisticated disc carving
algorithms. As file systems and file formats become more complex so must the

intelligence of these algorithms in order to preserve forensic integrity and utility.

The current implementation of the algorithms described in chapter III can be

viewed in the CVS repository of Foremost at http://sourceforge.net/. At the time of this

paper version 1.0 is in its testing phase, once completed it will be made available at

http://foremost.sourceforge.net/.

B. PROBLEMS

The code, as provided in Foremost version 0.69, is somewhat platform dependent
and needs to be rewritten to encourage portability/modularity to at least other UNIX
platforms if not Windows. The main reason that this code has not been incorporated into
Sleuthkit is the fact that it is very Linux dependent and cannot be easily ported to Solaris
or BSD. Jesse Kornblum (The original author) is rewriting the entire program for this
reason. Once this is complete, the work described in this thesis will be incorporated into
the new version. The inclusion of Foremost into Sleuthkit will give added weight to the
forensic suite and hopefully increase its popularity within organizations that can not

afford expensive Windows based products, or wish to make use of open source solutions.

59

One of the main problems faced in developing a tool such as Foremost is the fact
that the memory of the machine used for analysis is finite. This problem manifests itself
when attempting to extract files that span our “chunk” size. The default chunk size used
by Foremost is 100MB, thus large files are analyzed 100MB at a time. What are the best
methods to “bridge the gap” between chunks while analyzing an image? The easy
answer is to just re-read from the disk every time we find a file near the edge of a chunk,
however, disk reads are inefficient and should be minimized. Foremost 1.0 uses the
“max file size” approach to deal with this problem. A look ahead can be performed to
meet this size. A simpler approach is to use very high end machines with large amounts

of memory. The problem would be reduced as the amount of available memory grows.

C. FUTURE WORK

The creation of a standard library of file specific extraction methods so all
forensic tools can have access to the same robust algorithms to carve data would be a
significant capability for the forensics community. This would allow tools to focus on
other areas of forensic research while having a powerful set of methods to detect and

extract given file formats.

In addition to file recognition, block recognition poses a more complicated
problem. As a file-system becomes more fragmented this will be a technology that must
be employed in an attempt to continue the usefulness of disc carving. This is especially
relevant when taking RAM images into account as paging leaves files seemingly
scattered across the image. If these blocks could be detected and rebuilt to be fed to an
extraction algorithm that can detect valid file formats this would greatly improve live

forensic capabilities.

Improvements of OLE and GZIP extraction methods require more study than is
covered in the scope of this paper. The available documentation of OLE file structure is
limited. Existing methods are in place via the API and programs provided by the Chicago
Project. However, these methods do not provide adequate means to determine the actual
file size. OLE documents are notorious for their garbage data and wasted space. There

are tools available to read and write to this “garbage” area of the file. More research and

60

reverse engineering are needed to be able to track this space so it can be accounted for
when determining file sizes. Our experimentation using the algorithm described
previously shows that one can usually determine file sizes within a block of the actual file
end. This is adequate if the goal is to read the document but doesn’t provide accurate
results in terms of forensics as the extracted data is not identical to the actual file on this

disk.

GZIP file detection lacks functionality without a GZIP decompression algorithm,
as described previously. Such a method incorporated in Foremost would allow for more

accurate extractions as well as the inflation of archived files on the fly.

Single indirect block detection provides a simple and useful tool to aide the
forensic analysis of UNIX file-systems. However, being able to provide additional logic
to rebuild files based on their single as well as double and triple indirect blocks poses a
more challenging problem not addressed in this paper. Such functionality would allow
better analysis of file-systems which employ smaller block sizes thus requiring more
indirect blocks. In addition large multimedia files and documents could be extracted

more efficiently.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

APPENDIX A. SOURCE CODE

This appendix includes all files which were modified in the development of
Foremost 1.0. This wversion 1is current as of 3/09/05: please go to

http:/ /foremost.sourceforge.net to get the latest copy. The main intelligence of

Foremost comes from the extract.c file where all the extraction functions are fully

defined.

>

EXTRACT.C

extract.c
Copyright (c) 2005, N ck M kus

~
I T T T T . T T R O

-~

This programis free software; you can redistribute it and/or nodify it
under the ternms of the GNU General Public License as published by the Free
Sof tware Foundation; either version 2 of the License, or (at your option)
any |l ater version.

This programis distributed in the hope that it will be useful, but WTHOUT
ANY WARRANTY; without even the inplied warranty of MERCHANTABILITY or

FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU General Public License for
nore details.

You shoul d have received a copy of the GNU General Public License along with
this program if not, wite to the Free Software Foundation, Inc., 59 Tenple
Pl ace, Suite 330, Boston, MA 02111-1307 USA

This file contains the file specific functions used to extract
data from an i mage.

Each has a simlar structure
f_state *s: state of the program

c_offset: of fset that the header was recorded within the current chunk
f oundat : The | ocation the header was "foundat"

bufl en: How rmuch buffer is left until the end of the current chunk
needl e: Search specification

f_offset: Offset that the current chunk is located within the file

#i ncl ude "nmain. h"

#i ncl ude "extract. h"

#i nclude "ol e. h"

extern char buffer[OQUR BLK_SI ZE] ;
extern int verbose;

extern int dir_count;

extern int block_list[OQUR BLK_SIZE / sizeof (int)];
extern int *FAT;

extern char *extract_nane;
extern int extract;

extern int FATbIk;

extern int highblk;

/**

*Function: extractZl P

*Description: Gven that we have a ZI P header junp through the file headers
until we reach the EOF.

*Return: A pointer to where the ECF of the ZIPis in the current buffer

63

LR EEEREEEEEEEE R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE R EEEEEEEEEEEEEEEEEE Ry

char* extractZl P(f_state *s, unsigned |long |long c_offset,char *foundat, unsigned |ong
long buflen, s_spec* needl e, unsigned long long f_offset)
{

char* current pos=NULL

char* buf =f oundat ;

unsi gned short comment _| engt h=0

char* extractbuf = NULL

struct ziplLocal Fi | eHeader | ocal FH

int bytes_to_search=50*KI LOBYTE;

unsigned long long file_size=0

while(1) /*Junp through each local file header until the central directory structure
is reached, nuch faster than searching */

if(foundat[2]=="\x03" && foundat[3]=="\x04') /*Verfiy we are |ooking at a |oca
file header*/
{
| ocal FH. conpr essed=ht oi (& oundat [18], LI TTLE_ENDI AN)
I ocal FH. fi | enane_I engt h=ht os(& oundat [26], LI TTLE_ENDI AN)
| ocal FH. extra_| engt h=ht os(&f oundat [28], LI TTLE_ENDI AN)

/* Sanity checking*/
i f(local FH. conpressed > needl e->max_| en) return foundat +needl e- >header _| en

if(local FH. fil enane_l ength > 100) return foundat+needl e->header_| en

/*Check if we should grab nmore fromthe disk*/
i f(local FH. conpressed+30 > bufl en-(foundat-buf))

{
return NULL;/*Go back grab nore and try agai n*/

f oundat +=I ocal FH. conpr essed
foundat +=30; /*Size of the local file header data structure*/
foundat +=| ocal FH. fi | enanme_| engt h
f oundat +=l ocal FH. extra_l ength

#i f def DEBUG

printf("local FH. conpressed: =%\ n", | ocal FH. conpr essed) ;

#endi f

}

el se

br eak;
}
}
byt es_t o_sear ch=(f oundat - buf)
i f (buflen-(foundat-buf) < bytes_to_search)

byt es_t o_sear ch=bufl en- (f oundat - buf)

current pos=f oundat ;
#i f def DEBUG

printf("Search for the footer bytes_to_search: =%l
buflen:=%1d\n", bytes_t o_search, bufl en)
#endi f

foundat= bm search(needl e->f oot er, needl e- >f oot er _| en, foundat, byt es_t o_sear ch, needl e-
>f oot er _bm t abl e, needl| e- >case_sen, SEARCHTYPE_FORWARD) ;
#i f def DEBUG

printf("Search conplete \n");
#endi f

if(foundat) /*Found the end of the central directory structure, determ ne the exact
I ength and extract*/

{
/*Junmp to the comrent |ength field*/
#i f def DEBUG
printf("di stance searched: =% \n", f oundat - current pos)
#endi f

64

i f (bufl en-(foundat-buf) > 20)
f oundat +=20;

el se
return NULL;

}
comment _| engt h=ht os(f oundat, LI TTLE_ENDI AN) ;
f oundat +=comrent _| engt h+1;
file_size = (foundat-buf);
#i f def DEBUG
printf("File size %1d\n",file_size);
#endi f
extract buf =(unsi gned char*) malloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
writeToDi sk(s, needl e, file_size,extractbuf,c_offset+f_offset);
free(extracthbuf);
return foundat;

i f(bytes_to_search > buflen-(currentpos-buf)) return NULL;

#i f def DEBUG

printf("l give up \n");
#endi f

return currentpos;
}

A AR R R RS EEE

*Function: extract PDF

*Description: Gven that we have a PDF header check if it is Linearized, if so

grab the file size and we are done, else search for the W&CF
*Return: A pointer to where the ECF of the PDF is in the current buffer

**/

char* extract PDF(f_state *s, unsigned long | ong c_offset,char *foundat,
I ong buflen, s_spec* needl e, unsigned long |ong f_of fset)
{

char* current pos=NULL;

char* buf =f oundat ;

char* extractbuf = NULL;

unsi gned char* tenpsize;

unsi gned |long int size=0;

int file_size=0;

char* header =f oundat ;

int bytes_to_search=0;

f oundat +=needl e- >header _| en;/* Junp Past the %°DF HEADER */
current pos=f oundat ;

/ *Det ermi ne when we have searched enough*/
i f(buflen >= needl e->max_| en)

byt es_t o_sear ch=needl| e- >nax_| en;

}

el se

byt es_t o_sear ch=bufl en;

}

unsi gned | ong

/*Check if the buffer is less than 100 bytes, if so search what we have*/

if(buflen < 512) return NULL;
el se

{
current pos=f oundat ;
/*Check for .obj in the first 100 bytes*/
foundat= bm search(needl e->markerlist[1].val ue, needl e-

>mar kerlist[1].1en, foundat, 100, needl e->marker|ist[1]. marker _bm t abl e, needl e-

>case_sen, SEARCHTYPE_FORWARD) ;
i f(!foundat)

65

{
#i f def DEBUG
printf("no obj found\n");
#endi f
return currentpos+100;

}

f oundat =curr ent pos;
/*Search for "./L " to see if the file is linearized*/

foundat= bm search(needl e->markerlist[2].val ue, needl e-
>markerlist[2].1en, foundat, 512, needl e->markerlist[2]. marker_bm tabl e, needl e-
>case_sen, SEARCHTYPE_FORWARD) ;

i f(foundat)
{

foundat= bm search(needl e->markerlist[0].val ue, needl e-
>markerlist[0].len, foundat, 512, needl e->markerlist[0]. marker_bmtabl e, needl e-
>case_sen, SEARCHTYPE_FORWARD) ;

}

el se

{
#i f def DEBUG
printf("not |inearized\n");
#endi f

}

if(foundat) /*The PDF is linearized extract the size and we are done*/

f oundat +=needl e- >markerlist[0]. | en;
tenpsi ze=(char*) mal | oc(8*si zeof (char));
t enpsi ze=mencpy(tenpsi ze, f oundat, 8);

si ze=at oi (tenpsi ze) ;

free(tenpsize);

if(size <=0) return foundat;
if(size > buflen)

{

i f(size > needl e->max_|len) return foundat;
el se return NULL;
}
header +=si ze;
f oundat =header ;
f oundat - =needl| e- >f oot er _| en;
/*Junmp back 10 bytes and see if we actually have and EOF there*/
f oundat - =10;
current pos=f oundat ;
foundat= bm search(needl e->f oot er, needl e- >f oot er _| en, f oundat , needl e-
>f oot er _| en+9, needl e- >f oot er _bm t abl e, need| e- >case_sen, SEARCHTYPE_FORWARD) ;
if(foundat)/*There is an valid EOF at the end, Wite to disk*/

{
f oundat +=needl e- >f oot er _| en+1;
file_size = (foundat-buf);
extract buf =(unsi gned char*) nmalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
writeToDi sk(s, needle,file_size,extractbuf,c_offset+f_offset);
free(extracthbuf);
return foundat;
}

return NULL;

}
el se /*Search for Linearized PDF failed, just |ook for 9%&OF */

{
#i f def DEBUG
printf(" Li neari zed search failed, searching % bytes,
buflen: =% 1d\n", bytes_t o_search, bufl en- (header-buf));

66

#endi f
f oundat =cur r ent pos;
foundat= bm search(needl e->footer, needl e-
>f oot er _| en, foundat, byt es_t o_sear ch, needl e- >f oot er _bm t abl e, needl e-
>case_sen, SEARCHTYPE_FORWARD) ;

if(foundat) /*Wite the non-linearized PDF to disk*/

f oundat +=needl| e- >f oot er _| en+1;
file_size = (foundat-buf);

extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);

writeToDi sk(s, needle,file_size,extractbuf,c_offset+f_offset);
free(extracthbuf);
return foundat;

}
return NULL;

}

1A AR R E RS EEEEEEEEEEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TR

*Function: extractCPP

*Description: Use keywords to attenpt to find C/ C++ source code

*Return: A pointer to where the ECF of the CPP file is in the current buffer
**I
char* extract CPP(f_state *s, unsigned |long |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec* needl e, unsigned long |long f_of fset)

{

char* header =f oundat ;
char* buf =f oundat ;
char* extractbuf = NULL;
int end=0;

nt start=0;

nt i=0;

nt marker_scor e=0;

nt ok=FALSE;

nt file_size=0;

char* footer=NULL;

/*Search for a " or a < within 20 bytes of a #include statenent*/
for(i=0;i<20;i++)

if(foundat[i]=="\x22" || foundat[i]=="\x3C)
{
0ok=TRUE;
}

if(lok) return foundat+needl e->header _| en;

/*Keep running through the buffer until an non printable character is reached*/
whi | e(isprint(foundat[end]) || foundat[end]=="\x0a' || foundat[end]=="\x09")

{

end++;

f oundat +=end- 1;
f oot er =f oundat ;

if(end < 50) return foundat;

/*Now | ets go the other way and grab all those comrents at the begining of the file*/

whil e(isprint(buf[start]) || buf[start]=="\x0a' || buf[start]=="\x09")
{

start--;
}

67

header =&buf [start +1];
file_size=(footer-header);

f oundat =header ;

/*Now we have an ascii file to | ook for keywords in*/

foundat= bm search(needl e->f oot er, needl e->f oot er _| en, header, file_size, needle-
>f oot er _bm t abl e, FALSE, SEARCHTYPE_FORWARD) ;

i f(foundat) marker_score+=1;

f oundat =header ;

foundat= bm search(needl e->markerlist[0].val ue, needl e->markerlist[0].|en, header,
file_size, needl e->markerlist[0].nmarker_bmtabl e, 1, SEARCHTYPE_FORWARD) ;

i f(foundat) marker_score+=1;

i f(marker_score == 0) return foundat;
i f(foundat)

extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extract buf, header, fil e_size);

writeToDi sk(s, needl e, file_size, extractbuf,c_offset+f_offset+start+1);
free(extracthbuf);

return footer;

}
return NULL;

/**
*Function: extractHTM
*Description: Gven that we have a HTM header

search for the file EOF and check that the bytes areound the header are ascii
*Return: A pointer to where the EOF of the HTMis in the current buffer

**/

char* extractHTM f_state *s, unsigned |ong |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec* needl e, unsigned long |ong f_of fset)

{
char* buf =f oundat ;
char* extractbuf = NULL;
char* current pos=NULL;

int bytes_to_search=0;
int i=0;
int file_size=0;

/*Junmp past the <HTM. tag*/
f oundat +=needl| e- >header _| en;

/*Check the first 16 bytes to see if they are ASClI|*/
for(i=0;i<16;i++)

if(lisprint(foundat[i]) && foundat[i]!="\x0a" && foundat[i]!="\x09")
{
return foundat +16;

}

/*Determine if the buffer is large enough to enconpass a reasonabl e search*/
i f(buflen < needl e->max_| en)

byt es_t o_sear ch=buf| en- (f oundat - buf);
}
el se
{
}

/*Store the current position and search for the HTM.> tag*/

68

byt es_t o_sear ch=needl| e- >nax_| en;

current pos=f oundat ;

f oundat = bm sear ch(needl e- >f oot er, needl e-
>f oot er _| en, foundat, byt es_t o_sear ch, needl e->f oot er _bm t abl e, needl e-
>case_sen, SEARCHTYPE_FORWARD) ;

if(foundat)//Found the footer, wite to disk

file_size = (foundat-buf)+needl e->footer_Ien;

extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);

writeToDi sk(s, needl e, file_size,extractbuf,c_offset+f_offset);
free(extracthbuf);

f oundat +=needl| e- >f oot er _| en;

return foundat;

}

el se

{
}

return NULL;

/**

*Function: vali dOLEheader

*Description: run various tests aginst an OLE- HEADER to deterni ne whet her or not
it is valid.

*Return: TRUE/ FALSE

**/

int vali dOLEheader (struct OLE_HDR *h)

{

if(htos((char*) &h->reserved, FOREMOST_LI TTLE_ENDIAN) !=0 || htoi ((char*) &h-
>reservedl, FOREMOST_LI TTLE_ENDI AN) I =0 || htoi ((char*) &h-
>reserved2, FOREMOST_LI TTLE_ENDI AN) ! =0)

{

}

/*The m nimum sector shift is usually 276(64) and the uSectorShift is 279(512))*/
if(htos((char*) &h->uM ni Sector Shift, FOREMOST_LI TTLE_ENDI AN)! =6 || htos((char*) &h-
>uSect or Shi ft, FOREMOST LI TTLE_ENDIAN)! =9 || htoi ((char*) &h-
>di r_flag, FOREMOST LI TTLE_ENDI AN) < 0)
{

return FALSE;

return FALSE;

}

/*Sani ty Checki ng*/

if(htoi ((char*) &h->num FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN) <= 0 || htoi ((char*) &h-
>num FAT bl ocks, FOREMOST_LI TTLE_ENDI AN) > 100)

{
return FALSE;

}
if(htoi ((char*) &h->num extra_FAT_ bl ocks, FOREMOST_LI TTLE_ENDIAN) < O || htoi ((char¥*)
&h->num ext ra_FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN) > 100)

{
return FALSE;

}
return TRUE;

}

/***************k*k*k**k***k**k***k**k***kk*kk*k*k*kk*k*k*k**********************

*Functi on: checkO eName

*Description: Determ ne what type of file is stored in the OLE fornat based on the
nanes of DI RENT in the FAT table.

Return: A char consisting of the suffix of the appropriate file.

LR R EREE R R R R R R R LRy

char* checkd eNane(char* nane)

{

if(strstr(name, "WrdDocunment"))

69

return "doc";

el se if(strstr(name, "Worksheet") || strstr(name, "Book") || strstr(nane,"Wrkbook"))

{

return "xls";

el se if(strstr(name, " Power"))

{

return "ppt";
el se if(strstr(name, "Access") || strstr(nane, "AccessChj SiteData"))
{

return "nmbd";

else if(strstr(name, "Visio"))

{

return "vis";

el se if(strstr(name, "Sfx"))

{

return "sdw';
}
el se
{

return NULL;
}

return NULL;

}
int adjustBS(int size,int bs)
int reme(size%s);

i f(rem=0)

return size;

}
#i f def DEBUG

printf("\tnew size: =%l\n", size+(bs-ren));
#endi f

return (size+(bs-ren));

/**

*Function: extract OLE
*Description: Gven that we have a OLE header, junp through the OLE structure and
determ ne what type of file it is.
*Return: A pointer to where the EOF of the OLE is in the current buffer
**I
char* extract OLE(f_state *s, unsigned |ong |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec* needl e, unsigned long long f_offset,char* type)
{
char* buf =f oundat ;
char* extractbuf = NULL;
char* tenp=NULL;
char* suffix="ole";
int total size=0;
nt extrasize=0;
nt ol dbl k=0;
nt i, j;
nt size=0;
nt bl knum=0;
nt validbl k=512;
nt file_size=0;
nt num extra_FAT_bl ocks=0;
char* htoi _c=NULL;

70

int extra_dir_bl ocks=0;

i nt num_FAT_bl ocks=0;

i nt next_FAT_bl ock=0;
char *p;

int fib=1024;

struct OLE_HDR *h = NULL;

int result=0;

i nt hi ghbl ock=0;

unsi gned | ong m ni Sect or Cut of f =0;
unsi gned | ong csectM ni Fat =0;

/*Deal with globals defined in the OLE API, ugly*/
if(dirlist!=NULL) free(dirlist);

i f (FAT! =NULL) free (FAT);

initOLE();

i f(buflen < validblk) validbl k=bufl en;

h = (struct OLE_HDR*) foundat; /*cast the header block to point at foundat*/
#i f def DEBUG

dunp_header (h);
#endi f

num FAT_bl ocks=ht oi ((char*) &h->num FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN) ;

i f(!validOLEheader(h)) return (buf+validblk);

m ni Sect or Cut of f =ht oi ((char*) &h->m ni Sect or Cut of f, FOREMOST_LI TTLE_ENDI AN) ;

csect M ni Fat =ht oi ((char*) &h->csectM ni Fat, FOREMOST_LI TTLE_ENDI AN) ;

next _FAT_bl ock=ht oi ((char*) &h->FAT_next _bl ock, FOREMOST_LI TTLE_ENDI AN) ;

num ext ra_FAT_bl ocks=ht oi ((char*) &h->num extra_FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN) ;

FAT = (int *) Malloc (OUR BLK SIZE * (num FAT_blocks + 1));
p = (char *) FAT;

mencpy (p, &[1], OUR_BLK S| ZE - FAT_START);

if (next_FAT_block > 0)

{
p += (OUR_BLK SI ZE - FAT_START);
bl knum = next _FAT_bl ock;
for (i = 0; i < numextra_FAT_bl ocks; i++)
{
if(!get_block (buf, blknump, buflen)) return buf+validblk;
val i dbl k=(bl knum+1) * OUR_BLK_SI ZE;
p += OUR_BLK_SI ZE - sizeof (int);
bl knum = ht oi (p, FOREMOST_LI TTLE_ENDI AN) ;
}
}

bl knum = htoi ((char*) &h->root_start_bl ock, FOREMOST_LI| TTLE_ENDI AN) ;
hi ghbl ock=ht oi ((char*) &h->dir_fl ag, FOREMOST_LI TTLE_ENDI AN) ;
#i f def DEBUG
printf("getting dir block\n");
#endi f
[1if(!get_dir_block (buf, blknum buflen)) return buf+validblk;

if(lget_block (buf, blknum buffer, buflen))return buf+validblk;/*GET DI R BLOCK*/
#i f def DEBUG
printf("done getting dir block\n");
#endi f
val i dbl k=(bl knumt1) * OUR_BLK_SI ZE;
whil e (bl knum !'= END_OF_CHAI N)

{
#i f def DEBUG
printf("finding dir info extra_dir_blks:=%l\n", extra_dir_bl ocks);
#endi f
i f(extra_dir_blocks > 300) return buf+validblk;

/ ** PROBLEMA* * /
#i f def DEBUG

printf("***bl knum =% FATDbI k: =%\ n", bl knum FATDbI k) ;
#endi f

71

ol dbl k=bl knum
htoi _c=(char *) &FAT[bl knum/ (OUR_BLK SIZE / sizeof (int))];

FATbl k = htoi (htoi _c, FOREMOST LI TTLE_ENDI AN) ;
#i f def DEBUG
printf("***bl knum =% FATbI k: =%\ n", bl knum FATbI k) ;
#endi f

i f(!get_FAT_block (buf, bl knum block_list,buflen)) return buf+validblk;
bl knum = htoi ((char *) &bl ock_list[bl knum % 128], FOREMOST_LI| TTLE_ENDI AN) ;
#i f def DEBUG
printf("**bl knum =% FATbI k: =%\ n", bl knum FATDbI k) ;
#endi f
if (bl knum == END_OF_CHAIN || ol dbl k==bl knum)

{
#i f def DEBUG
printf("EOCC\ n");
#endi f
break;
}
extra_dir_bl ocks++;
resul t =get _di r_bl ock (buf, bl knum buflen);
if (result==SHORT_BLOCK)
{
#i f def DEBUG
printf("SHORT BLK\n");
#endi f
br eak;

else if(!result) return buf+validblk;

}
#i f def DEBUG
printf("DONE WTH WH LE\ n");
#endi f
bl knum = htoi ((char*) &h->root_start_bl ock, FOREMOST_LI| TTLE_ENDI AN) ;
size = OQUR_BLK_SIZE * (extra_dir_blocks + 1);
dirlist = (struct DI RECTORY *) Malloc (size);
menset (dirlist, 0, size);

if(!get_block (buf, blknumbuffer, buflen))return buf+validblk;/*GET DI R BLOCK*/
if(lget_dir_info (buffer))

return foundat +validbl k;

}

for (i =0; i < extra_dir_blocks; i++)
{
i f(!get_FAT_block (buf, blknum block_list,buflen)) return buf+validblk;
bl knum = htoi ((char *) &bl ock_list[bl knum % 128], FOREMOST_LI TTLE_ENDI AN) ;
if (bl knum == END_OF_CHAI N)
br eak;
#i f def DEBUG
printf("getting dir blk bl knum=%\ n", bl knum ;
#endi f
if(!get_block (buf, blknumbuffer, buflen))return buf+validblk;/*GET DI R BLOCK*/
if(lget_dir_info (buffer))

return buf+validbl k;

}

}
#i f def DEBUG
printf("dir count is %l\n",i);
#endi f
for (dl =dirlist, i =0; i < dir_count; i++ dl++)
{
menset (buffer, ' ', 75);
j = htoi ((char*) &dl->level, FOREMOST_LI TTLE_ENDI AN) * 4;
sprintf (&uffer[j], "%s", dl->nane);
j = strlen (buffer);

72

if(dl->name[0]=="@) return foundat+vali dbl k;
if (dl->type == STREAM
{

buffer[j] =" ";
sprintf (&uffer[60], "9Bd\n", dl->size);

i f(tenp==NULL) /*check if we have alread defined the type*/

t enp=checkd eNane(dl - >nane) ;
if(tenp) suffix=tenp;

}
if(dl->size > mniSectorCutoff)
t ot al si ze+=adj ust BS(dl - >si ze, 512) ;
el se

tot al si ze+=adj ust BS(dl - >si ze, 64);

#i f def DEBUG
fprintf (stdout, buffer);
#endi f
}

el se

{
sprintf (&uffer[j], "\n");
#i f def DEBUG
printf("\tnot streamdata \n");
fprintf (stdout, buffer);
#endi f

extrasi ze+=adj ust BS(dl - >si ze, 512) ;

total size+=fib;
#i f def DEBUG
printf("DIR Sl ZE: =%d, nunFATbl ks: =%l
M ni Fat : =%\ n", adj ust BS(((di r_count)*128), 512), (num _FAT_bl ocks*512), adj ust BS((64*csect M n
i Fat), 512));
#endi f
t ot al si ze+=adj ust BS(((di r_count)*128), 512);
tot al si ze+=(num_FAT_bl ocks*512);
total si ze+= adj ust BS((64*csect M ni Fat), 512);
i f ((hi ghbl k+5) > hi ghbl ock && hi ghbl k > 0)
{

hi ghbl ock=hi ghbl k+5;
}
hi ghbl ock=hi ghbl ock*512;

#i f def DEBUG
printf("\t highblock: =%\ n", hi ghbl ock);
#endi f
i f (highbl ock > totalsize)

{
#i f def DEBUG
printf(" Total size:=% a difference of %1d\n",totalsize, buflen-totalsize);
printf(" Extra size:=%l \n", extrasize);
printf(" Hi ghbl ock is greater than total size\n");
#endi f

}

t ot al si ze=adj ust BS(t ot al si ze, 512);

#i f def DEBUG
printf(" Total size:=%l a difference of %I|d\n",totalsize, buflen-totalsize);
printf(" Extra size: =% \n", extrasize);

73

t ot al si ze=hi ghbl ock;

#endi f

if(buflen < total size)

{
#i f def DEBUG

printf(" ***Error not enough left in the buffer left:=%1Id
needed=%***\ n", bufl en, totalsize);
#endi f
t ot al si ze=buf | en;
}

f oundat =buf ;
hi ghbl ock-=5*512;
i f (highblock > 0 & hi ghbl ock < bufl en)

f oundat +=hi ghbl ock;
el se
f oundat +=t ot al si ze;

/*Return to the highest blknumread in the file, that way we don't miss files that
are cl ose*/

file_size = totalsize;

extract buf =(unsi gned char*) nmalloc(file_size*sizeof(char));
mencpy(extractbuf, buf, fil e_size);

if(suffix) needl e->suffix=suffix;

if(!strstr(needl e->suffix,type) && type!="all")
{

return foundat;
witeToDi sk(s, needle,file_size,extractbuf,c_offset+f_offset);

free(extractbuf);
return foundat;

//**/

int checkMyv(char* atom

{

#i f def DEBUG
printf("Atom= %%%%\n", aton{ 0], aton{ 1], aton{ 2], aton{ 3]);

#endi f
if(strncmp(atom "free",4)==0 || strncnp(atom "ndat", 4)==0 ||

strncnp(atom "free",4)==0 || strncnp(atom "w de",4)==0 || strncnp(atom "PICT", 4)==0)
{

return TRUE;

}
if(strncnp(atom"trak",4)==0 || strncnp(atom "ndat", 4)==0 ||
strncnp(atom "np3",3)==0 || strncnp(atom "wi de",4)==0 || strncnp(atom "moov", 4)==0)

return TRUE;
}

return FALSE;

1A AR R E RS EEEEEEEEEEEEEEEEREEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

*Function: extract MOV

*Description: Gven that we have a MOV header JUWP through the nov data structures
until we reach ECF

*Return: A pointer to where the ECF of the MW is in the current buffer

******>\—*********>\—>\—*********>\—>\—*********>\—>\—*********>\—>\—*******************************/

char* extract MOV(f_state *s, unsigned |long |long c_offset,char *foundat, unsigned |ong

I ong buflen, s_spec* needl e, unsigned long |ong f_of fset)

74

char* buf =f oundat -4
char* extractbuf = NULL
unsi gned int atonsize=0
unsigned int filesize=0
i nt ndat =FALSE;
foundat - =4
buf | en+=4
11 printf (" nmoooov\n")
while(1l) /*Loop through all the atons until the ECF is reached*/
{

at onsi ze=ht oi (f oundat , FOREMOST_BI G_ENDI AN)
#i f def DEBUG
printf("Atonsize: =%\ n", at onsi ze)
#endi f
if(atonsize <= 0 || atonsize > needl e->max_| en)
{

return foundat +needl e- >header _| en+4;

filesize+=atonsize; /*Add the atonsize to the total file size*/
[lprintf("mark2\n");
if(filesize > buflen)

#i f def DEBUG
printf("file size > buflen fs:=% bf:=%1d\n",filesize, buflen)

#endi f
i f(buflen >= needl e->max_I| en) return foundat+needl e- >header _| en+4;
el se
{
[lprintf("buflen:=%1d max:=%1d", bufl en, needl e->max_| en);
return NULL
}

}
[lprintf("mark4\n");
f oundat +=at onsi ze
i f (buflen-(foundat-buf) < 5)

i f (mdat)

br eak;

}

el se

{
#i f def DEBUG
printf("No ndat found")
#endi f
return foundat;

}

/*Check if we have an ndat atom these are required thus can be used to
* Weed out corrupted file*/

i f(strncnp(foundat+4, "ndat", 4) ==0)

{

nmdat =TRUE;
}

i f (checkMov(foundat+4)) /*Check to see if we are at a valid header*/

{
#i f def DEBUG

printf (" Checknmov succeeded\n")
#endi f

}

el se
{
#i f def DEBUG
printf("Checknov failed\n")
#endi f
i f(ndat)
{

br eak;

75

el se

{
#i f def DEBUG
printf("No ndat found");
#endi f
return foundat;

}

}
} //End | oop
i f(foundat)

{

filesize = (foundat-buf);
#i f def DEBUG
printf("file size:=%\n",filesize);
#endi f
extract buf =(unsi gned char*) nalloc(fil esize*sizeof(char));
mencpy(extract buf, buf, filesize);
writeToDi sk(s, needl e, filesize,extractbuf,c_offset+f_offset);
free(extractbuf);

return foundat;

}
#i f def DEBUG
printf("NULL Atonsize:=%\n", at onsi ze);
#endi f
return NULL;

AR R R E RS EEEEEEEEEEEEEEEEREE TR

*Function: extract WV
*Description: Gven that we have a WW header
search for the file header and grab the file size.
*Return: A pointer to where the ECOF of the WW is in the current buffer

LR EEEEEEEEEEEEEEREEEREEEEEEEEEEEEEEEEY]

char* extract WAV(f_state *s, unsigned |long |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec* needl e, unsigned long |ong f_of fset)

{

char* current pos=NULL;

char* header =f oundat ;

char* extractbuf = NULL;

char* buf =f oundat ;

unsigned long long int size=0;
unsigned long long file_size=0;
i nt header Si ze=0;

int fileQbj Header Si ze=0;

i nt nunber of Header Obj ect s=0;
int reserved[?2];

int bytes_to_search=0;

/*1f we have | ess than a WW header bail out*/
if(buflen < 70) return NULL;

foundat +=16;/*Junp to the header size*/
header Si ze=ht ol | (f oundat , FOREMOST_LI TTLE_ENDI AN) ;

f oundat +=8;
nunber of Header Qbj ect s=ht oi (f oundat, FOREMOST_LI TTLE_ENDI AN) ;
f oundat +=4; //Junp to the begin File properties obj

reserved[0] =f oundat [0] ;
reserved[1] =f oundat [1] ;
f oundat +=2;

/1 end header obj

//kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk**********************/

76

/] Sanity Check
i f (header Si ze <= 0 || nunberof Header Obj ects <= 0 || reserved[0] != 1)

{
}

current pos=f oundat ;
i f (bufl en-(foundat-buf) >= needl e->max_| en) bytes_to_search=needl e- >nax_| en;
el se bytes_to_search=bufl en-(foundat - buf);

return foundat;

/*Note we are not searching for the footer here, just the file header ID so we can get
the file size*/

foundat= bm search(needl e->f oot er, needl e- >f oot er _| en, foundat, byt es_t o_sear ch, needl e-
>f oot er _bm t abl e, needl| e- >case_sen, SEARCHTYPE_FORWARD) ;

i f(foundat)

{

foundat +=16;/*junp to the headersi ze*/
fil eCoj Header Si ze=ht ol | (f oundat, LI TTLE_ENDI AN) ;
f oundat +=24; //Junmp to the file size obj
si ze=ht oi (foundat, LI TTLE_ENDI AN) ;

#i f def DEBUG

printf("SIZE: =%1|d\n", size);
#endi f
}

el se

{

}

/*Sanity check data*/
if(size > 0 & & size <= needl e->max_| en && size <= buflen)

return NULL;

header +=si ze;
#i f def DEBUG
printf(" Found a WW at:=%1d,File size:=%1d\n", c_of fset, size);
printf(" Header si ze: =%, nunber of Header Obj ects: = %
,reserved: =%, %@\ n", header Si ze, nunber of Header Cbj ect s, reserved[0], reserved[1]);
#endi f
/*Everything seem ok, wite to disk*/
file_size = (header-buf);
extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
writeToDi sk(s, needl e, file_size, extractbuf,c_of fset+f_offset);
free(extractbuf);
foundat +=fil e_si ze;
return header;

}

return NULL;

}

/**

*Function: extractRl FF

*Description: Gven that we have a Rl FF header parse header and grab the file size.
*Return: A pointer to where the ECF of the RIFF is in the current buffer
****************************k*k**k***k**k***k**kk**kk*kk*k************************/
char* extractRI FF(f_state *s, unsigned long |ong c_offset,char *foundat, unsigned |Iong
I ong buflen, s_spec* needl e, unsigned long |ong f_of fset, char* type)

{

unsi gned char* buf =f oundat ;

char* extractbuf =NULL;

int size=0;

unsigned long long file_size=0;

si ze=ht oi (&f oundat [4] , FOREMOST_LI TTLE_ENDI AN) ; /* Grab the total file size in
little endian fromoffset 4*/

if(strncnp(&f oundat[8],"AVI", 3)==0) /*Sanity Check*/

i f(strncnp(&foundat[12],"LI ST", 4) ==0) /*Sanity Check*/

77

if(size > 0 & & size <= needl e->nax_| en && size <= buflen)

{
#i f def DEBUG
printf("\'n Found an AVI at:=%Id,File size:=%\n", c_offset, size);

#endi f
file_size = size;
extract buf =(unsi gned char*) nmalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
needl e- >suf fi x="avi ";
if(!strstr(needl e->suffix,type) & type!="all") return foundat +si ze;
writeToDi sk(s, needl e, file_size, extractbuf,c_of fset+f_offset);
free(extracthbuf);
f oundat +=si ze;
return foundat;
}
return buf +needl e- >header _| en;
}
el se
{
return buf +needl e- >header _| en;
}
}
el se if(strncnp(&f oundat[8], "WAVE", 4) ==0) /*Sanity Check*/

if(size > 0 & & size <= needl e->nax_| en && size <= buflen)

{
#i f def DEBUG
printf("\n Found a WAVE at:=%1d, File size:=%\n", c_offset, size);

#endi f
file_size = size;
extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
needl e- >suf fi x="wav";
if(!strstr(needl e->suffix,type) & type!="all") return foundat +si ze;
writeToDi sk(s, needl e, file_size, extractbuf, c_of fset+f_offset);
free(extracthbuf);
foundat +=fil e_si ze;
return foundat;
}
return buf +needl e- >header _| en;
}
el se
{

return buf +needl e- >header _| en;

}
return NULL;

}

/**
*Function: extract BMP
*Description: Gven that we have a BWMP header parse header and grab the file size.
*Return: A pointer to where the ECF of the BMP is in the current buffer
**/
char* extractBMP(f_state *s, unsigned |long |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec* needl e, unsigned long |long f_offset)
{

char* buf =f oundat ;

int size=0;

i nt headerl engt h=0;

int vertical size=0;

char* extract buf =NULL;

unsigned long long file_size=0;

f oundat +=2; /*JUMP the first to bytes of the header
(BM*/

78

si ze=ht oi (foundat, LI TTLE_ENDI AN) ; /*Grab the total file size in
little_endian*/

/*Sanity Check*/
if(size <= 0 || size > needle->max_|l en) return foundat;

i f (buflen-(foundat-buf) < 20)
return foundat;

f oundat +=16;
header | engt h=ht oi (f oundat , FOREMOST_LI TTLE_ENDI AN) ;

/| Header |ength
i f (headerl ength > 1000 || headerlength <= 0) return foundat;

f oundat +=4;
vertical si ze=ht oi (f oundat, FOREMOST_LI| TTLE_ENDI AN) ;

//Vertical length

if(verticalsize <=0 || verticalsize > 2000) return foundat;

f oundat - =22;
#i f def DEBUG

printf("\n The size of the BMWP is %l, Header length:=% , Vertical Size:=
%I\ n", si ze, header| engt h, verti cal si ze);
#endi f

if(size <= buflen)

file_size = size;
extract buf =(unsi gned char*) malloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
witeToDi sk(s, needl e, file_size,extractbuf,c_offset+f_offset);
free(extractbuf);
foundat +=fil e_si ze;
return foundat;

}
return NULL;

1A AR R E R SRR EEEEEEREEEEEEEEREEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE TR

*Function: extractdF

*Description: Gven that we have a G F header parse the given buffer to determ ne
* where the file ends.

*Return: A pointer to where the ECF of the GF is in the current buffer

AR EEEY]

char* extractd F(f_state *s, unsigned |long |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec* needl e, unsigned long long f_offset)
{

char* buf =f oundat;

char* current pos=foundat;

char* extractbuf = NULL;

int bytes_to_search=0;

unsigned long long file_size=0;
[l printf("needl e->header_| en: =% needl e->f oot er _| en: =%\ n", need| e- >header _| en, needl e-
>f oot er_| en);

f oundat +=4; /*Junmp the first 4 bytes of the gif
header (G F8)*/
/*Check if the GF is type 89a or 87a*/
i f(strncrmp(foundat,"9a",2)==0 || strncnp(foundat,"7a", 2)==0)
{
f oundat +=2; /*Junmp the length of the header*/

current pos=f oundat ;
i f (buflen-(foundat-buf) >= needl e->max_| en) bytes_to_search=needl e- >nmax_| en;

79

el se bytes_to_search=bufl en-(foundat - buf);
[lprintf("bytes_to_search: =% needl e->f ooter_| en: =% needl e-
>header _| en: =%\ n", byt es_t o_sear ch, needl e- >f oot er _I| en, needl e- >header _I| en);
foundat= bm search(needl e->f oot er, needl e-
>f oot er _| en, foundat, byt es_t o_sear ch, needl e->f oot er _bm t abl e, needl e-
>case_sen, SEARCHTYPE_FORWARD) ;
i f(foundat)

/*We found the EOF, wite the file to disk and return*/

#i f def DEBUG
printx(foundat, 0, 16);

#endi f

file_size = (foundat-buf)+needl e->footer_I en;
#i f def DEBUG

printf("The GF file size is %lu
c_offset:=%1u\n",file_size, c_offset);

#endi f
extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
witeToDi sk(s, needl e, file_size,extractbuf,c_offset+f_offset);
f oundat +=needl| e- >f oot er _| en;
free(extracthbuf);
return foundat;
}
return NULL;
}
el se /*Invalid G F header return the current
poi nter*/
{
return foundat;
}
}

/**

*Function: extract MPG
* Not done yet

LR EEREEEEEEEEEEEEEEEEY]

char* extract MPG(f_state *s, unsigned |long |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec * needl e, unsigned |long long f_offset)
{

char* buf =f oundat ;

char* current pos=NULL;

unsi gned char* extractbuf = NULL;
//signed short headersi ze=0;

int bytes_to_search=0;

unsi gned short size=0;

unsigned long long file_size=0;

si ze=ht os(&f oundat [4] , FOREMOST_BI G_ENDI AN) ;
printf("size:=%l\n", size);

printx(foundat, 0, 16);
f oundat +=4;
*/

nt j=0;
f (foundat[15] =="\xBB')

i
i
{
}
el se
{

return buf +needl e- >header _| en;

i f(buflen <=2*KI LOBYTE)

80

byt es_to_search=bufl en

}
el se
byt es_t o_search=2*KI LOBYTE;
}
whi | e(1)

j =0;

current pos=f oundat ;
#i f def DEBUG

printf("Searching for marker\n");

#endi f

foundat= bm search(needl e->markerlist[0].val ue, needl e-
>markerlist[0].len, foundat, bytes_to_search, needl e->narkerlist[0]. marker_bm tabl e, needl e-
>case_sen, SEARCHTYPE_FORWARD) ;

i f(foundat)

{
#i f def DEBUG
printf("Found after searching %\ n", foundat - currentpos);
#endi f
whi | e(1)

if(foundat[3] >= '\xBB' && foundat[3] <='"\xEF')
{

#i f def DEBUG
printf("junping %:\n",j);
#endi f
si ze=ht os(&f oundat [4] , FOREMOST_BI G_ENDI AN) ;
#i f def DEBUG
printf("\t hit: ");
printx(foundat, 0, 16);
printf("size:=%\n\tjunp: ", size)
#endi f
file_size+=(foundat-buf)+size
if(size <= 0 || size > buflen-(foundat-buf))
{
#i f def DEBUG
printf("Not enough roomin the buffer ");

#endi f
if(size <= 50*KILOBYTE && size > 0)
{
/*We shoul d probably search
nor e*/
if(file_size < needl e->max_| en)
{
return NULL
}
el se
{
br eak;
}
}
el se
{
return currentpos+needl| e-
>header _| en
}

}

f oundat +=si ze+6;
#i f def DEBUG

printx(foundat, 0, 16);
#endi f

j ++;

el se

81

br eak;

}

}

i f(foundat[3]=="\xB9")
br eak;

}
else if(foundat[3]!="\xBA && foundat[3]!="\x00")
{
/*This is the error state where this doesn't seemto be an
nmpg anynor e*/

si ze=ht os(&f oundat [4] , FOREMOST_BI G_ENDI AN) ;
#i f def DEBUG

printf("\t ***TEST: %\n",foundat[3]);

print x(foundat, 0, 16);

printf("size:=%l\n", size);

#endi f
if((currentpos - buf) >= 1* MEGABYTE)
{

f oundat =cur r ent pos;
br eak;

}

return current pos+needl e- >header _| en;

}
el se if(foundat[3]=="\xB3")

{
[lexit(-1);
f oundat +=3;
}
el se
{
f oundat +=3;
}
}
el se
{ .
if((currentpos - buf) >= 1*MEGABYTE)
{
f oundat =cur r ent pos;
br eak;
}
el se
{
#i f def DEBUG
printf("RETURNI NG BUF\ n");
#endi f
return buf +needl e- >header _I en;
}
}
}

i f(foundat)
{

file_size = (foundat-buf)+needl e->footer_I en;
if(file_size < 1*KILOBYTE) return buf+needl e->header _| en;

el se

return buf +needl e- >header _| en;
/1 file_size= needl e->max_| en;

if(file_size > buflen) file_size=buflen;
f oundat =buf ;
#i f def DEBUG
printf("The file size is %lu c_offset:=%1u\n",file_size,c_offset);
#endi f
extract buf =(unsi gned char*) nmalloc(file_size*sizeof(char));

82

mencpy(extract buf, buf, file_size)

writeToDi sk(s, needle, file_size,extracthbuf,c_offset+f_offset)
foundat +=fil e_si ze

free(extractbuf)

return foundat;

AR AR R R E R EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEEE TR

*Function: extractJPEG

*Description: Gven that we have a JPEG header parse the given buffer to determ ne
* where the file ends

*Return: A pointer to where the ECF of the JPEGis in the current buffer

LR EEEREEREEEEEEEEEEEEEEEEY]

char* extractJPEGf_state *s, unsigned long |long c_offset,char *foundat, unsigned |ong
I ong buflen, s_spec * needl e, unsigned |long long f_offset)

char* buf =f oundat ;
char* current pos=NULL

unsi gned char* extractbuf = NULL
signed short headersize=0

int bytes_to_search=0

i nt hasTabl e=FALSE;

i nt hasHuf f man=FALSE,

unsigned long long file_size=0

/*Check if we have a valid header*/
if(buflen < 128)
{
printf("low buffer %1d\n", buflen);
return NULL

}

i f(foundat[3]=="\xe0");//JFIF header

el se if(foundat[3]=="\xel);//EXI F header

el se return foundat +needl e- >header _l en;//Invalid keep searching

while(l) /* Junp through the headers until we reach the "data" part of the file*/

{
#i f def DEBUG
printx(foundat, 0, 16);
#endi f
f oundat +=2;
header si ze=ht os(& oundat [2] , FOREMOST_BI G_ENDI AN)
#i f def DEBUG
printf("Headersize: =% buflen:=%1d\n", headersi ze, bufl en);
#endi f
i f (headersize < 0)

{
#i f def DEBUG
printf("Negative header size\n");

#endi f
return buf +needl e- >header _| en;

i f (headersize > buflen)
{ return NULL;
f oundat +=header si ze
if(foundat[2]!="\xff")

br eak;

/*lgnore 2 "Oxff" side by side*/
if(foundat[2]=="\xff' && foundat[3]=="\xff")

f oundat ++

&3

}

if(foundat[3]=="\xdb' || foundat[4]=="\xdb")
hasTabl e=TRUE;

}

el se if(foundat[3]=="\xc4")

hasHuf f man=TRUE;

/*Al'l jpegs must contact a Huffrman marker as well as a quantization table*/
if(!hasTabl e || !hasHuffnan)

{
#i f def DEBUG
printf("No Table or Huffnman \n");
#endi f

}

current pos=f oundat ;

/lsprintf("Searching for footer\n");

i f (buflen-(foundat-buf) >= needl e->max_| en) bytes_to_search=needl e->max_| en;
el se bytes_to_search=bufl en-(foundat-buf);

return buf +needl e- >header _| en;

foundat= bm search(needl e->f oot er, needl e- >f oot er _| en, foundat, bytes_t o_sear ch, needl e-
>f oot er _bm t abl e, needl e- >case_sen, SEARCHTYPE_FORWARD) ;

if(foundat) /*Found found a valid JPEG/

/*We found the EOF, wite the file to disk and return*/
file_size = (foundat-buf)+needl e->footer_| en;
#i f def DEBUG
printf("The jpeg file size is %lu c_offset:=%lu\n",file_size,c_offset);

#endi f
extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extract buf, buf, file_size);
writeToDi sk(s, needl e, file_size,extractbuf, c_offset+f_offset);
f oundat +=needl| e- >f oot er _| en;
free(extracthbuf);
return foundat;
}
el se
{
return NULL;
}

} //End Extract JPEG

1A AR R R E RS EEEEEEEEEEEEEEEEREEEEEEEEEEREEREEEEEEEEEEREEEEEEEEEEEEEEEEEEE TR

*Function: extract GENERI C
*Description:
*Return: A pointer to where the ECF of the

LR EEEY]

char* extract GENERI C(f _state *s, unsigned |long |ong c_offset, char *foundat, unsigned | ong
I ong buflen, s_spec * needl e, unsigned |long long f_offset)
{

char* buf =f oundat ;

unsi gned char* extractbuf = NULL;

int bytes_to_search=0;

unsigned long long file_size=0;

i f (buflen-(foundat-buf) >= needl e->max_| en) bytes_to_search=needl e->max_| en;
el se bytes_to_search=bufl en-(foundat-buf);

i f (needl e- >f oot er ==NULL)
{

}

f oundat =NULL;

84

el se

foundat= bm search(needl e->f oot er, needl e-
>f oot er _| en, foundat, byt es_t o_sear ch, needl e- >f oot er _bm t abl e, needl e-
>case_sen, SEARCHTYPE_FORWARD) ;
}

i f(foundat)

file_size = (foundat-buf)+needl e->footer_I en;
el se

file_size= needl e->nax_| en;

if(file_size > buflen) file_size=buflen;
f oundat =buf ;
#i f def DEBUG
printf("The file sizeis %Wlu c_offset:=%Ilu\n",file_size,c_offset);
#endi f
extract buf =(unsi gned char*) nalloc(file_size*sizeof(char));
mencpy(extractbuf, buf, file_size);
writeToDi sk(s, needle,file_size,extractbuf,c_offset+f_offset);
foundat +=fil e_si ze;
free(extractbuf);
return foundat;

}

char* extractFile(f_state *s, unsigned long |ong c_offset, char *foundat,
unsi gned | ong | ong buflen, s_spec * needle,unsigned |ong long f_offset)

{
i f (needl e- >t ype==JPEG)

{ return extractJPEQ s, c_of fset, foundat, buflen, needle,f_offset);
zal se if(needl e->type==G F)
{ return extractd F(s, c_of fset, foundat, buflen, needle,f_offset);
}el se if(needl e- >t ype==BMWP)
{ return extract BMP(s, c_of fset, foundat, buflen, needle,f_offset);
}el se if(needl e- >t ype==RI FF)
{ needl e->suffix="riff";
return extractRlI FF(s, c_of fset, foundat, buflen, needle,f_offset,"all");
zal se if(needl e->type==AVl)
{ return extractRlI FF(s, c_of fset, foundat, buflen, needle,f_offset,"avi");
zal se if(needl e- >t ype==WAV)
{ return extractRlI FF(s, c_of fset, foundat, buflen, needle,f_offset,"wav");
needl e- >suffix="rif";
LI se if(needl e->type==
{ return extract WW(s, c_of fset, foundat, buflen, needle,f_offset);
33| se if(needl e- >t ype==0OLE)
{ needl e- >suf fi x="ol e";
return extract OLE(s, c_of fset, foundat, buflen, needle,f_offset,"all");
LI se if(needl e- >t ype==DCC)
; return extract OLE(s, c_of fset, foundat, buflen, needle, f_offset,"doc");

el se if(needl e->t ype==PPT)

85

/*

*/

{

}
el se if(needl e->type==XLS)

return extract OLE(s, c_of fset, f oundat,

return extract OLE(s, c_of fset, f oundat,

needl e- >suffi x="ol e";

el se if(needl e- >t ype==PDF)

return extract PDF(s, c_of fset, foundat,

el se if(needl e- >t ype==CPP)

return extract CPP(s, c_of fset, foundat,

el se if(needl e->type==HTM

return extract HTM s, c_of f set, f oundat,

el se if(needl e->type==MPQ
{

}
el se if(needl e->type==ZI P)

return extract MPQ s, c_of fset, f oundat,

return extractZl P(s, c_of fset, foundat,

}
el se if(needl e->type==MWV | |
{
return extract MOV(s, c_of fset, foundat,
}

el se if(needl e->t ype==CONF)

needl e- >t ype==VIPEG)

return extract GENERI C(s, c_of f set, f oundat,

}
el se
{
return NULL
}
EXTRACT.H

local file header signature
versi on needed to extract
general purpose bit flag
conpr essi on net hod

last nod file tine

last nod file date
crc-32

conpressed size
unconpressed si ze
filenane |ength

extra field length

central file header signature
ver si on made by

versi on needed to extract
general purpose bit flag
conpr essi on et hod

last nod file time

last mod file date
crc-32

conpressed size
unconpressed size
filenane length

extra field length

file comment |ength

4

NNBEBAEDDNDNDNDNDN

4

NNONNBEBREBAENNMNNNDNDN

byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es

byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es
byt es

86

(0x04034b50)

(0x02014b50)

bufl en,

bufl en,

buf | en,

bufl en,

bufl en,

bufl en,

bufl en,

bufl en,

bufl en,

needl e, f _of fset, "ppt");

needl e, f_of fset, "xls");

needl e, f_offset);

needl e, f _offset);

needl e, f _offset);

needl e, f_offset);

needl e, f _offset);

needl e, f_offset);

needl e, f_offset);

di sk nunmber start 2 bytes

internal file attributes 2 bytes
external file attributes 4 bytes
relative of fset of |ocal header 4 bytes

*/

/* end of central dir signature 4 bytes (0x06054b50)

nunber of this disk 2 bytes
nunmber of the disk with the

start of the central directory 2 bytes
total nunber of entries in

the central dir on this disk 2 bytes
total nunber of entries in

the central dir 2 bytes
size of the central directory 4 bytes
of fset of start of centra

directory with respect to

the starting di sk nunber 4 bytes
zipfile conment |ength 2 bytes
zipfile comment (variable size)

*/

struct ziplLocal Fi | eHeader {
unsi gned int signature; //0
unsi gned short version; //4
unsi gned short genFlag; //6
signed short conpression;//8
unsi gned short |ast_nod_tinme;//10
unsi gned short |ast_nod_date;//12
unsigned int crc;//14
unsi gned int conpressed;//18
unsi gned int unconpressed;//22
unsi gned short filenanme_length;//26
unsi gned short extra_length;//28
b
struct zipCentral Fil eHeader {
unsi gned int signature;//0
unsi gned char version_extract[2];//4
unsi gned char version_nmadeby[2];//6
unsi gned short genFlag;//8
unsi gned short conpression;//10
unsi gned short last_nod_tinme;//12
unsi gned short |ast_nod_date;// 14
unsigned int crc;//16
unsi gned int conpressed;//20
unsi gned i nt unconpressed;//24
unsi gned short filenanme_|length;//28
unsi gned short extra_l ength;//30
unsi gned short filecomrent_|ength;//32
unsi gned short di sk_nunber_start;//34
}
struct zi pEndCentral Fil eHeader {
unsi gned int signature;//0
unsi gned short nunOidisk;//4
unsi gned short conpression;//6
unsi gned short start_of _central _dir;//8
unsi gned short numentries_in_central _dir;//10
unsigned int size_of_central _dir;//12
unsigned int offset;//16
unsi gned short comment _l ength;//20

b

void printZip(struct ziplLocal Fil eHeader* fil eHeader , struct zipCentral Fil eHeader*
central Header)
{

printf("\n Local Header Data\n")

printf("GenFl ag: =%, conpr essed: =%, unconpr essed: =%\ n", fi | eHeader -
>genFl ag, fi | eHeader - >conpr essed, fi | eHeader - >unconpr essed)

printf("Conpression: =%, filenane_|en:=%l, extral en: =%\ n", fil eHeader -
>conpression, fil eHeader->fil enane_| engt h, fi | eHeader - >extra_| engt h)

printf(" Central Header Data\n")

87

printf (" GenFl ag: =%, conpr essed: =%, unconpr essed: =%\ n", cent r al Header -
>genFl ag, cent r al Header - >conpr essed, cent r al Header - >unconpr essed) ;
printf("Conpression: =%, Version Mdeby: =% %\ n", central Header -
>conpr essi on, central Header - >ver si on_nadeby[0] , cent r al Header - >ver si on_nadeby[1]) ;

}

7777?7spacing???
C. APIL.C
/*
Modi fied APl from http://chicago. sourceforge. net/devel /docs/ ol e/
Basically the same AP, added error checking and the ability
to check buffers for docs except just files.
*/

#i ncl ude "nmain. h"
#i nclude "ol e. h"

char buffer[OQUR BLK_SI ZE] ;
char *extract_naneg;

int extract = 0;

nt dir_count = 0;

nt *FAT;

nt verbose = TRUE;

nt FATDbI k;

nt curr FATbI k;

nt hi ghbl k=0;

nt block_|ist[OUR BLK SIZE / sizeof (int)];
extern int errno;

voi d initOLE()

{
int i=0;
extract =0;
di r _count =0;
FAT=NULL;
hi ghbl k=0;
FATbI k=0;
curr FATbl k=-1;
dirlist=NULL;
dl =NULL;
for(i=0;i<OUR BLK_SIZE / sizeof (int);i++)
bl ock_list[i]=0;
}
for(i=0;i<OUR _BLK_SI ZE; i ++)
buffer[i]=0;
}
}
void *
Mal | oc (size_t bytes)
{
void *x;
x = malloc (bytes);
if (x)
return x;
die ("Can't malloc % bytes.\n", (char *) bytes);
return O;
}

88

int
Read (int fd, char *buf, int size)

{
if (read (fd, buf, size) != size)
fprintf (stderr, "Bad read of %l bytes\n",
exit (1);
return size;
}
int

Wite (int fd, char *buf, int size)

if (wite (fd, buf, size) != size)

fprintf (stderr, "Bad wite of % bytes\n",

exit (1);
}

return size;

voi d
die (char *fnt, void *arg)

fprintf (stderr, fm, arg);
exit (1);

int

get _dir_block (char* fd, int blknumint buffersize)

int i;
struct OLE_DIR *dir;
char* dest =NULL;

dest =get _ol e_bl ock (fd, blknum buffersize);
i f(dest==NULL)
{

}
for (i = 0; i < DIRS_PER BLK; i++)

return FALSE;

dir = (struct OLE_ DIR *) &dest[sizeof (struct OLE DI R)

if (dir->type == NO_ENTRY)
br eak;

}

i f (i ==DI RS_PER_BLK)
{

}

el se

{
}

return TRUE;

return SHORT_BLOCK;

int
get _dir_info (char *src)

int i, j;

char *p, *q;

struct OLE_ DIR *dir;
i nt punct Count =0;
short nane_si ze=0;

89

si ze);

si ze);

* il

for (i =0; i < DIRS_PER BLK; i++)

dir = (struct OLE_ DIR *) &src[sizeof (struct OLE DIR) * i];
punct Count =0;

/1if(dir->reserved! =0) return FALSE;
if(dir->type < 0) /1 Should we check if values are > 5

{
#i f def DEBUG
printf("\nlnvalid directory type\n");
printf("type: =% size:=%u \n", dir->type,dir->size);
#endi f
return FALSE;

}

if (dir->type == NO_ENTRY)
br eak;

#i f def DEBUG
//dunp_dirent (i);

#endi f

dl = &dirlist[dir_count++];

i f(dl ==NULL)

{
#i f def DEBUG

printf("dl ==NULL!!! bailing out\n");
#endi f

return FALSE;

}

if(dir_count > 500) return FALSE; /*SANI TY CHECKI NG+/

q = dl ->nane;

p = dir->nane;

name_si ze=ht os((char*) &dir->nansi z, FOREMOST_LI| TTLE_ENDI AN) ;

#i f def DEBUG
printf(" dir->nansiz: =%\ n", nane_si ze) ;

#endi f
i f(nane_size > 64|| nane_size <= 0) return FALSE
if (*p<' ")
p += 2; /* skip | eading short */

for (j = 0; j < nanme_size; j++, p++)

i f(p==NULL || g==NULL) return FALSE;
if (*p & isprint(*p))

~—~—

i f(ispunct(*p)) punctCount ++;
*qQ++ = *p;

}
i f (punct Count > 3)

{
#i f def DEBUG
printf("dl->name: =%\ n", dl - >nane) ;
printf("pcount > 3!!! bailing out\n");
#endi f
return FALSE;

}
i f(dl->name==NULL)

{
#i f def DEBUG
printf(" ***NULL dir nane. bailing out \n");

90

#endi f
return FALSE;

/*1 gnore Catal ogs*/
if(strstr(dl->nane,"Catalog")) return FALSE;

*q = 0’
dl ->type = dir->type;
dl ->si ze = htoi ((char*)&dir->si ze, FOREMOST_LI TTLE_ENDI AN) ;

dl ->start _bl ock = htoi ((char*)&dir->start_bl ock, FOREMOST_LI| TTLE_ENDI AN)
dl ->next = htoi ((char*)&dir->next_dirent, FOREMOST_LI| TTLE_ENDI AN)

dl ->prev = htoi ((char*)&dir->prev_dirent, FOREMOST_LI TTLE_ENDI AN)
dl->dir = htoi ((char*)&dir->dir_dirent, FOREMOST_LI| TTLE_ENDI AN)

if (dir->type != STREAM

dl ->s1 = dir->secsl
dl ->s2 = dir->secs?2
dl ->d1 = dir->daysl
dl ->d2 = dir->days2
}
}
return TRUE
}
static int *Inlv; /* last next link visited ! */
int
reorder_dirlist (struct DI RECTORY *dir, int |evel)
{
[lprintf(" Reordering the dirlist\n")
dir->level = level
if (dir->dir !'=-1]] dir->dir > dir_count)
{
return 0

else if (!reorder_dirlist (&irlist[dir->dir], level + 1))

return O
/* reorder next-link subtree, saving the nost next link visited */
if (dir->next !'=-1)
if (dir->next > dir_count)
return O
else if (!'reorder _dirlist (&irlist[dir->next], level))
return O
}
el se

Inlv = &dir->next;
/* move the prev child to the next link and reorder it, if any exist
*/

if (dir->prev = -1)
if (dir->prev > dir_count)
return O
el se

*Inlv = dir->prev;

dir->prev = -1
if (!reorder_dirlist (&irlist[*Inlv], level))
return O
}
return 1

int get_block (char* fd, int blknum char *dest,long |ong int buffersize)

91

char* tenp=fd

int i=0;

unsi gned long |l ong junmp=(unsigned |ong | ong) OUR BLK_SI ZE*(unsi gned | ong
I ong) (bl knum + 1)

if(blknum< -1]| junmp < 0 || blknum> buffersize || buffersize < junp)

{
#i f def DEBUG
printf(" Bad bl k readl bl knum =% junp:=%1d
buf fersi ze=% 1 d\ n", bl knum j unp, buf f er si ze)
#endi f
return FALSE;

}

t emp=f d+j unp;
#i f def DEBUG
printf(" Junping to %1d bl knumr% buffersize=%1d\n",junp, bl knum buffersize)
#endi f

for(i=0;i < OUR_BLK_SIZE;i ++)

dest[i]=tenp[i];

i f((bl knumtl) > highbl k) highbl k=bl knum+1
return TRUE

}

char* get_ol e_block (char* fd, int bl knumunsigned |ong | ong buffersize)

{

unsigned long long junp=(unsigned |long |long) OUR BLK S| ZE*(unsigned |ong
I ong) (bl knum + 1)

if(blknum< -1 || jump < O || blknum > buffersize || buffersize < junp)

{
#i f def DEBUG
printf(" Bad bl k readl bl knum =%l junp:=%1d
buf f ersi ze=% 1 d\ n", bl knum j unp, buf f er si ze)
#endi f
return FALSE;

}
#i f def DEBUG

printf(" Junping to %1d bl knunv% buffersize=%1d\n",junp, bl knum buff ersi ze)
#endi f
return (fd+junp);
}
int
get _FAT_block (char* fd, int bl knum int *dest,int buffersize)
{

static int FATbIKk;
/1 static int currFATblk = -1

FATbl k = htoi ((char*) &FAT[bl knum/ (OUR BLK SIZE / si zeof
(int))], FOREMOST_LI TTLE_ENDI AN) ;
#i f def DEBUG
printf("****pl knum =% FATDbI k: =% curr FATbl k: =%\ n", bl knum FATbI k, cur r FATbI k)

#endi f
if (currFATbl k !'= FATbI k)

{
#i f def DEBUG
printf("*****p] knum =% FATbI k: =%\ n", bl knum FATbI k)

#endi f
if(lget_block (fd, FATblk, (char *) dest, buffersize))

return FALSE;
}
curr FATbl k = FATbI k;

}
return TRUE

92

voi d
dunp_header (struct OLE_HDR *h)

int i, *x;
//struct OLE_HDR *h = (struct OLE_HDR *) buffer;

/1 fprintf (stderr, "clsid =");

[lprintx(h->clsid,QO0, 16);

fprintf (stderr, "\nuMnorVersion = %\t", htos((char*)&h-
>uM nor Ver si on, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uDiIVersion = %\t", htos((char*) &h-
>uDl | Ver si on, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uByteOrder = %\n", htos((char*) &h-
>uByt eOr der, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uSectorShift = %\t", htos((char *) &h-
>uSect or Shi ft, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uMniSectorsShift = %\t", htos((char *) &h-
>uM ni Sect or Shi ft, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "reserved = %\n", htos((char *) &h-
>reserved, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "reservedl = %N\t", htoi((char *) &h-
>reservedl, FOREMOST LI TTLE_ENDI AN)) ;

fprintf (stderr, "reserved2 = %N\t", htoi((char *) &h-
>reserved2, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "csectMniFat = %\t", htoi ((char *) &h-
>csect M ni Fat, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "mni SectorCutoff = %\n", htoi ((char *) &h-

>mi ni Sect or Cut of f, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "root_start_block = %\n", htoi((char *) &h-
>root _start_bl ock, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "dir flag = %u\n", htoi((char *) &h-
>di r _fl ag, FOREMOST_LI| TTLE_ENDI AN)) ;

fprintf (stderr, "# FAT blocks = %\ n", htoi ((char *) &h-
>num _FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "FAT_next_block = %\n", htoi((char *) &h-
>FAT_next _bl ock, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "# extra FAT blocks = %\ n", htoi ((char *) &h-
>num ext r a_FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN)) ;

x = (int *) &h[1];

fprintf (stderr, "bbd list:");

for (i = 0; i < 109; i++, x++)

{
if ((i %10) == 0)
fprintf (stderr, "\n");
if(*x=="\xff"') break;
fprintf (stderr, "% ", *x);
fprintf (stderr, "\n FrxxkxkxxxkkxrkpEnd of header*******xxx%\p").

struct OLE_HDR* reverseBl ock(struct OLE_HDR *dest, struct OLE_HDR *h)
{
int i, *x, *y;
dest - >uM nor Ver si on=ht os((char *) &->uM nor Ver si on, FOREMOST_LI| TTLE_ENDI AN) ;
dest - >uDl | Ver si on=ht os((char*) &h->uDl | Versi on, FOREMOST_LI TTLE_ENDI AN) ;
dest - >uByt eOr der =ht os((char*) &h->uByt eOrder, FOREMOST_LI TTLE_ENDI AN) ; | *28*/
dest - >uSect or Shi ft =htos((char *) &h->uSector Shift, FOREMOST_LI TTLE_ENDI AN) ;
dest - >uM ni Sect or Shi ft =ht os((char *) &h-
>uM ni Sect or Shi ft, FOREMOST_LI| TTLE_ENDI AN) ; / *32*/

dest - >reserved=htos((char *) &h->reserved, FOREMOST_ LI TTLE_ENDI AN) ; | *34*/
dest - >reservedl=htoi ((char *) &h->reservedl, FOREMOST_LI TTLE_ENDI AN) ; [*36*/
dest - >reserved2=htoi ((char *) &h->reserved2, FOREMOST_LI TTLE_ENDI AN) ; [*40*/

dest - >num FAT_bl ocks=ht oi ((char *) &h->num FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN) ;
[*44*]
dest ->root _start_bl ock=htoi ((char *) &h->root_start_bl ock, FOREMOST_LI TTLE_ENDI AN) ;
[*48*/
dest - >df si gnature=htoi ((char *) &h->dfsi gnature, FOREMOST_LI TTLE_ENDI AN) ;
[*52*]

93

dest - >mi ni Sect or Cut of f =ht oi ((char *) &h->mi ni Sect or Cut of f, FOREMOST_LI TTLE_ENDI AN) ;
[*56%/
dest->dir_flag=htoi ((char *) &h->dir_flag, FOREMOST_LI TTLE_ENDI AN) ;
/*60 first sec in the mni fat chain*/

dest - >csect M ni Fat =ht oi ((char *) &h->csectM ni Fat, FOREMOST_LI TTLE_ENDI AN) ; [*64
nunber of sectors in the mnifat */

dest - >FAT_next _bl ock=ht oi ((char *) &h->FAT_next_bl ock, FOREMOST_LI TTLE_ENDI AN); /*68*/

dest - >num extra_FAT_bl ocks=htoi ((char *) &h-
>num ext ra_FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN) ;

x = (int *) &h[1];

y= (int *) &dest[1];

for (i = 0; i < 109; i++, x++)

{
*y=htoi ((char *) x, FOREMOST_LI TTLE_ENDI AN) ;
y++,

return dest;

}
voi d dunp_ol e_header (struct OLE_HDR *h)
{

int i, *x;

[lfprintf (stderr, "clsid =");

/Il printx(h->clsid,O0, 16);

fprintf (stderr, "\nuMnorVersion = %\t", htos((char*)&h-
>uM nor Ver si on, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uDiIVersion = %\t", htos((char*) &h-
>uDl | Ver si on, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uByteOrder = %\n", htos((char*) &h-
>uByt eOr der, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uSectorShift = %\t", htos((char *) &h-
>uSect or Shi ft, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "uMniSectorsShift = %\t", htos((char *) &h-
>uM ni Sect or Shi ft, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "reserved = %\n", htos((char *) &h-
>reserved, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "reservedl = %N\t", htoi((char *) &h-
>reservedl, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "reserved2 = %\t", htoi((char *) &h-
>reserved2, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "csectMniFat = %\t", htoi ((char *) &h-
>csect M ni Fat, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "mni SectorCutoff = %\n",htoi((char *) &h-
>m ni Sect or Cut of f, FOREMOST_LI| TTLE_ENDI AN)) ;

fprintf (stderr, "root_start_block = %\n", htoi((char *) &h-
>root _start_bl ock, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "dir flag = %\ n", htoi((char *) &h-
>di r _fl ag, FOREMOST_LI| TTLE_ENDI AN)) ;

fprintf (stderr, "# FAT blocks = %\ n", htoi ((char *) &h-
>num_FAT_bl ocks, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "FAT_next_block = %\n", htoi((char *) &h-
>FAT_next _bl ock, FOREMOST_LI TTLE_ENDI AN)) ;

fprintf (stderr, "# extra FAT blocks = %\ n", htoi ((char *) &h-
>num ext ra_FAT_bl ocks, FOREMOST_LI| TTLE_ENDI AN)) ;

x = (int *) &h[1];

fprintf (stderr, "bbd list:");

for (i =0; i < 109; i++, x++)

{
if ((i %10) == 0)
fprintf (stderr, "\n");
if(*x=="\xff"') break;
fprintf (stderr, "% ", htoi((char *) x, FOREMOST_LI TTLE_ENDI AN)) ;
fprintf (stderr, "\n FrxkkkkkxxkkxrxEnd of header*******xxxk\p").
}
int

94

dunp_dirent (int which_one)

int i;

char *p;

short unknown;
struct OLE_ DIR *dir;

dir = (struct OLE_DIR *) &buffer[which_one * sizeof (struct OLE DIR)];

if (dir->type == NO_ENTRY)

return TRUE;
fprintf (stderr, "DIRENT_% :\t",
fprintf (stderr, "9%\t", (dir->ty
(dir->type == STORAGE) ? "directo

/* get UNI CODE nane */

p = dir->nane;

if (*p<' ")

{
unknown = *((short *) p);
[/fprintf (stderr, "9%®4x\t",
p += 2;

}

for (i =0; i < dir->nansiz; i++,
if (*p & (*p > 0x1f))
if(isprint(*p))
{ fprintf (stderr, "%",
el se

printf("*** Invalid
return FALSE;

}

fprintf (stderr, "\n");

[lfprintf (stderr, "prev_dirent =
[/fprintf (stderr, "next_dirent =
[/fprintf (stderr, "dir_dirent =
[lfprintf (stderr, "name = %\t"

fprintf (stderr, "nansiz = %\t"
fprintf (stderr, "type = %\t",
fprintf (stderr, "reserved = %\

fprintf (stderr, "start block =
fprintf (stderr, "size = %u\n",

fprintf (stderr, "\n FRkkkkkkkkkkkkEnd of dirent*xxxxkkkkkk\pny.

return TRUE;
}

D. OLE.H

#defi ne TRUE 1
#define FALSE 0
#defi ne SPECI AL_BLOCK -3
#def i ne END_OF_CHAI N -2
#def i ne UNUSED -1

#def i ne NO_ENTRY

#def i ne STORAGE

#def i ne STREAM

#def i ne ROOT

#defi ne SHORT_BLOCK 3

N O

#defi ne FAT_START Ox4c
#defi ne OUR _BLK_SI ZE 512
#defi ne DI RS_PER BLK 4
#define M N(x,y) ((x)

dir_count);

pe == ROOT) ? "root directory"

ry" @ "file");

unknown) ;

/* step over unknown short

p++)

“p);

char % ***\n", *p);

%u\t”, dir->prev_dirent);
%u\t", dir->next_dirent);
%u\n", dir->dir_dirent);

, dir->nane);
, dir->nansiz);
dir->type);

n", dir->reserved);

% u\n", dir->start_bl ock);

dir->size);

<(y) 2.(x) @ (¥)

95

*/

#i
#i
#i
#i
#i
#i
#i
#i

ncl ude <stdarg. h>
ncl ude <string. h>
ncl ude <stdio. h>
ncl ude <sys/types. h>
ncl ude <unistd. h>
ncl ude <stdlib. h>
ncl ude <fcntl. h>
ncl ude <sys/stat.h>

#i ncl ude <ctype. h>

struct OLE_HDR

{
char magic[8]; [*0*/
char clsid[16]; [*8*/

unsi gned short uM nor Versi o
unsi gned short uDl | Versi on;
unsi gned short uByteOrder;

unsi gned short uSector Shift

n; | *24%]
[*26%/

[*28*%/

; [*30%/

unsi gned short uM ni Sector Shift;/*32%/

unsi gned short reserved,
unsi gned | ong reservedl;
unsi gned | ong reserved2;
unsi gned | ong num FAT_bl oc
unsigned long root_start_b
unsi gned | ong df signature;
unsi gned | ong m ni SectorCu
unsigned long dir_flag;
unsi gned | ong csectM ni Fat;
unsi gned | ong FAT_next _bl oc

[*34*]
[*36*/
[*40*/

ks; | *44%]

| ock; | *48*/

[*52*%/

tof f;

/*60 first sec in the mni
/*64 nunber of sectors in the mnifat

k; /*68*/

unsi gned | ong num extra_FAT_bl ocks; [*72%]

/* FAT block list starts he

struct OLE_ DR

{

}s

char nane[64] ;

unsi gned short nansi z;
char type;

char bflags; //0 or 1
unsi gned |l ong prev_dirent;
unsi gned | ong next _dirent;
unsi gned |l ong dir_dirent;
char clsid[16];

unsi gned | ong user Fl ags;
int secsi;

int daysi;

int secs2;

int days2;

unsi gned | ong start_bl ock;
unsi gned | ong si ze;

short reserved; //must be O

struct DI RECTORY

{

char nane[64] ;
int type;

int level;
int start_bl ock;
int size;
int next;
int prev;
int dir;
int si;
int s2;
int di;
int d2;

*dirlist, *dl;

[*56*/

re !l first 109 entries */

/lstarting SECT of

96

stream

*/

fat chain*/

int get_dir_block (char* fd, int blknumint buffersize);

int get_dir_info (char *src);

voi d extract_stream (char* fd, int blknum int size);

voi d dunp_header (struct OLE_HDR *h);

int dunp_dirent (int which_one);

int get_block (char* fd, int blknum char *dest,long |long int buffersize);
int get_FAT_block (char* fd, int blknumint* dest,int buffersize);

int reorder_dirlist (struct DIRECTORY *dir, int |evel);

char* get_ole_block (char* fd, int bl knumunsigned |Iong | ong buffersize);
struct OLE_HDR* reverseBl ock(struct OLE_HDR *dest,struct OLE_HDR *h);

voi d dunp_ol e_header (struct OLE_HDR *h);
void *Mal |l oc (size_t bytes);

int Read (int fd, char *buf, int size);
int Wite (int fd, char *buf, int size);
void die (char *fnmt, void *arg);

void initOLE();

E. ENGINE.C

/* FOREMOST

*

* By Jesse Kornblum and Kris Kendal |

* This is a work of the US Government. |In accordance with 17 USC 105,
* copyright protection is not available for any work of the US Governnent.
*

* This programis distributed in the hope that it will be useful, but
* W THOUT ANY WARRANTY; without even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE.

*

*/

#i ncl ude "main. h"

int user_interrupt(f_state *s, f_info *i)

{

audit _nsg(s,"Interrupt received at %", current_tine());

/* RBF - Wite user_interrupt */
fcl ose(i->handl e);

free(s);

free(i);

exit(-1);

return FALSE;

char* grabFronDi sk(unsigned long long offset, f_info *i,unsigned |ong |ong |ength)

{

unsi gned |l ong | ong bytesread = O;
char* newbuf = (char*) mall oc(length*sizeof(char));

97

f seeko(i - >handl e, of f set, SEEK_SET) ;

byt esread = fread(newbuf, 1,1 ength,i->handl e);
i f(bytesread! =l ength) return NULL;

el se return newbuf;

}

/*

Perform a nodified boyer-nmoore string search (w support for wildcards and case-
insensitive searches)

and allows the starting position in the buffer to be manually set, which allows data
to be ski pped
*/

unsi gned char *bm search_ski pn(char *needle, size_t needle_len,unsigned char *haystack,
size_t haystack_| en,
size_t tabl e[UCHAR MAX + 1], int casesensitive,int searchtype, int start_pos)

{
regi ster size_t shift=0;
register size_t pos = start_pos;
unsi gned char *here;
if(needle_len == 0)
return haystack;
if (searchtype == SEARCHTYPE_FORWARD || searchtype == SEARCHTYPE_FORWARD NEXT)
{
whi l e (pos < haystack_| en)
while(pos < haystack len && (shift = tabl e[(unsigned char)haystack[pos]]) >
0)

{

pos += shift;

}
if (0 == shift)

{ here = (char *)&haystack[pos-needl e_| en+1];
if (0 == memni | dcardcnp(needl e, here, needl e_|l en, casesensitive))
return(here);
) }el se pos++;

}
return NULL;
}
el se if(searchtype == SEARCHTYPE_REVERSE) //Run our search backwards
whi l e (pos < haystack_| en)
{

whi | e(pos < hayst ack_| en && (shift = tabl e[(unsi gned
char) hayst ack[hayst ack_| en-pos-1]]) > 0)
{

pos += shift;
}
if (0 == shift)
if (0 == memni |l dcardcnp(needl e, here = (char *)&haystack[haystack_| en-pos-
1], needl e_l en, casesensitive))

{
}

el se pos++;

return(here);

}
}
return NULL;

}
return NULL;

98

/*

Perform a nodified boyer-nmoore string search (w support for wldcards and case-
insensitive searches)

and allows the starting position in the buffer to be manually set, which allows data
to be ski pped
*/

unsi gned char *bm search(char *needle, size_t needle_len,unsigned char *haystack, size_t
hayst ack_| en,
size_t tabl ef]UCHAR MAX + 1], int case_sen,int searchtype)

[lprintf("The needle2 is:\t");
/'l printx(needle, 0, needl e_| en);

return bm sear ch_ski pn(needl e,
needl e_l en,
hayst ack,
hayst ack_I en,
tabl e,
case_sen,
sear cht ype,
needle_len - 1);

}
voi d setup_strean(f_state *s, f_info *i)

char buffer[MAX_STRI NG_LENGTH] ;
unsigned long long skip=(((unsigned long |ong)s->skip)*((unsigned long |ong)s-
>bl ock_si ze));
#i f def DEBUG
printf("s->ski p=% s->bl ock_si ze=% total =% | u\ n", s->ski p, s- >bl ock_si ze, (((unsi gned
I ong | ong)s->ski p)*((unsigned | ong | ong)s->bl ock_size)));
#endi f
i ->bytes_read
i ->total _megs

0;
i->total _bytes / ONE_MEGABYTE;

if (i->total _bytes != 0)
audi t _msg(s, "Length: % (%lu bytes)",
human_r eadabl e(i ->total _bytes, buffer),i->total _bytes);
el se
audit _msg(s, "Length: Unknown");

i f(s->skip!=0)

audit_nsg(s, "Skipping: % (%Ilu bytes)",
human_r eadabl e(ski p, buf fer), ski p);
f seeko(i - >handl e, ski p, SEEK_SET) ;
if(i->total bytes!=0) i->total _bytes-=skip;
}

audit_msg(s," ");

#i fdef __ WN32
i->last_read = 0;
i ->overflow count = 0;
#endi f

}

int indBl ock(char* foundat, unsigned |ong |ong buflen,int bs)

{

unsi gned char* tenp=foundat;
int junmp=12*bs;

unsi gned int bl ock=0;
unsigned int bl ock2=0;

unsi gned int dif=0;

int i=0;

99

unsi gned i nt one=1
/1int reconstruct=FALSE

/*Make sure we don't junp past the end of the buffer*/
if(buflen < junp+16) return FALSE

while(i < bs/4)
{
bl ock=ht oi (& enp[j unp+(i *4)], FOREMOST_LI TTLE_ENDI AN) ;

f(block < 0) return FALSE

i
i f (bl ock==0)
{
br eak;
}
i ++;
bl ock2=ht oi (& enp[j unp+(i*4)], FOREMOST_LI TTLE_ENDI AN)
i f(block2 < 0) return FALSE

i f (bl ock2==0)
{

br eak;

}
di f =bl ock2- bl ock;

i f(dif==0ne)
{

[lprintf("Dl F==1\n")
#i f def DEBUG
printf("blockl: =%, bl ock2: =% dif=%\n", bl ock, bl ock2, dif)
#endi f
}
el se

{

}
printf("blockl: =%, block2: =% dif=%\n", bl ock, bl ock2, dif)

return FALSE;
#i f def DEBUG
#endi f
}
if(i==0) return FALSE

/*Check if the rest of the bytes are zero'd out */
for(i=i+1l;i < bs/4;i++)

bl ock=ht oi (&t enp[j unp+(i*4)], FOREMOST_LI TTLE_ENDI AN)
i f (bl ock! =0)
{

return FALSE;

}

return TRUE

//***
*****************************k********************/

int search_chunk(f_state* s, wunsigned char* buf, f_info *i, wunsigned long 1|ong
chunk_si ze, unsigned long long f_of fset)

{

unsigned long long c_offset =0
unsi gned char* foundat =buf;
unsi gned char* current_pos=NULL
unsi gned char* header_pos=NULL
unsi gned char* newbuf =NULL

unsi gned | ong | ong current_bufl en=chunk_si ze
int tryBS[3]={4096, 1024, 512} ;
s_spec * needl e=NULL

100

int j=0;

int bs=0;

int reme0;

int x=0;

for(j=0;j< s->numbuiltin;j++)

needl e=&sear ch_spec[j];

foundat =buf; /*reset the buffer for the next search spec*/
#i f def DEBUG

printf(" SEARCHI NG FOR %' s\ n", needl e->suffi x);
#endi f

bs=0;

current _bufl en=chunk_si ze;

whi | e(foundat)

{
#i f def DEBUG

current _bufl en=chunk_si ze- (f oundat - buf) ;

printf("current buf:=%1d\n", current_buflen);
#endi f
if (signal_caught == SIGTERM || signal _caught == S| G NT)
{

user_interrupt(s,i);
printf ("deaning up.\n");
si gnal _caught = 0;

}
i f(get_node(s, node_quiet))/*RUN QUI ET SEARCH*/
{

#i f def DEBUG
printf("quick node is on\n");

#endi f
/*Check if we are not on a block head, adjust if so*/
reme(foundat - buf) % s->bl ock_si ze;

if(rem!=0)
{
f oundat +=(s- >bl ock_si ze-rem;
}
i f(memni | dcar denp(needl e- >header, f oundat , needl e- >header _| en, needl e-
>case_sen)! =0)
{
/*No match, junp to the next bl ock*/
[lprintf(" No match junping bs\n");
if(current_buflen > s->bl ock_size)
{
f oundat +=s- >bl ock_si ze;
conti nue;
else /*We are out of buffer lets go to the next search
spec*/
{
f oundat =NULL;
br eak;
}
) }
el se /*RUN STANDARD SEARCH*/
{
[lprintf("current buf:=%1d\n", current_buflen);
foundat = bm sear ch(needl e->header,
needl e- >header _| en,
f oundat ,
current _bufl en, //How nuch to search
t hr ough
needl e- >header _bm t abl e,
needl e- >case_sen, /| casesensati ve
SEARCHTYPE_FORWARD) ;
header _pos=f oundat ;
}

101

if(foundat != NULL && foundat >= 0) /*We got

appropriate heuristic to find the EOF*/

#i f def DEBUG
/1
#endi f

#i f def DEBUG

#endi f

{
current _bufl en=chunk_si ze- (f oundat - buf) ;
printf("current buf2:=%1Id\n", current_buflen);
i f (get _node(s, node_i nd_bl k))
{

11 printf("ind blk detection on\n");

for (x=0; x<3; x++)
{
bs=tryBS[x] ;
i f (indBl ock(foundat, current_bufl en, bs))

i f(get _node(s, node_verbose))

audit _msg(s,"\n I ndi rect

using bs:=% in a %\n", bs, needl e->suffix);

#i f def DEBUG
#endi f

current _bufl en

#i f def DEBUG

#endi f

}

printf("perform ng nmem nove\n");

i f (! menmmove(foundat + 12*bs,
- 13*bs)) break;

printf("performng mem nove conplete\n");

current_bufl en- =bs;

/'l current _bufl en=chunk_si ze- (f oundat - buf) ;

br eak;

c_offset = (foundat-buf);
current _pos=foundat ;
foundat =extract Fi | e(s, c_of f set, f oundat,

needl e, f_offset);

#i f def DEBUG

#endi f

current_bufl en,

i f(!foundat)

if(current_buflen < needl e->max_|en)/*W need to bridge the gap*/

{
printf(" Bridge the gap\n");

//grow buffer, call again

newbuf =gr abFr onDi sk(c_of fset +f _of fset, i, needl e->max_| en);

i f (newbuf ==NULL) br eak;

current _pos=extractFil e(s, c_offset, current_pos,

needl e, f_offset);
if(!current_pos)

{

/*We failed so we should put the file* back*/
f seeko(i ->handl e, c_of f set +f _of f set, SEEK_SET) ;

}
free(newbuf);
102

current _bufl en,

el se

#i f def DEBUG

printf(" RESET the FILE*\n");
#endi f

f oundat =header _pos;/*reset the foundat pointer to
| ocation of the |last header*/

f oundat +=needl e- >header _| en+1;/*j unp past the header*/

}
}
}
}/lend while
}
return TRUE;
}
int search_strean(f_state *s, f_info *i)
{

unsi gned | ong | ong bytesread =0;

unsi gned | ong | ong f_of fset=0;

unsi gned | ong | ong chunk_si ze=((unsi gned | ong | ong) s->chunk_si ze)* MEGABYTE;
unsi gned char* buf=(unsi gned char *)nall oc(sizeof (char)*chunk_si ze);

setup_strean(s,i);
#i f def DEBUG
printf("\n\t READING THE FI LE | NTO MEMORY\ n");
#endi f
whi | e((bytesread = fread(buf, 1, chunk_si ze,i->handle)) > 0)

if (signal_caught == SIGTERM || signal _caught == S| G NT)
{

user_interrupt(s,i);
printf ("deaning up.\n");
si gnal _caught = 0;

}
#i f def DEBUG

printf("\n\tbytes_read: =% | u\n", bytesread);
#endi f

sear ch_chunk(s, buf, i, bytesread, f_of fset);

f _of f set +=byt esr ead;

di spl ayPosition(s,i,f_offset);

/*

f_offset-=50;//junmp back 50 bytes to make sure we don't m ss anything

f seeko(i->handl e, f _of f set, SEEK_SET) ;

*/

}
#i f def DEBUG
printf("\'n\t DONE READI NG bytes_read: =% | u\ n", byt esread) ;
#endi f
if (signal_caught == SIGTERM || signal _caught == S| G NT)
{
user_interrupt(s,i);
printf ("C eaning up.\n");
si gnal _caught = 0;
}
free(buf);
return FALSE;
}

void audit_start(f_state *s, f_info *i)
audi t _nmsg(s, FOREMOST_DI VI DER) ;
audi t _msg(s,"File: %", i->file_name);
audit_nsg(s,"Start: %", current_tine());
}
void audit_finish(f_state *s, f_info *i)
audit _msg(s, "Finish: %", current_tinme());

103

t he

int process_file(f_state *s)

{
/lprintf("processing file\n");
f_info *i = (f_info *)malloc(sizeof(f_info));
char tenp[PATH_MAX] ;

if ((realpath(s->input_file,tenp)) == NULL)
{

print_error(s,s->input_file,strerror(errno));
return TRUE;
}

i->file_nane = strdup(s->input_file);
i->is_stdin = FALSE;
audit_start(s,i);
/1l printf("opening file %\n",i->file_nane);
#i f defined(__LI NUX)
#i f def DEBUG
printf("Using 64 bit fopen\n");
#endi f
i ->handl e = fopen64(i->file_nane,"rb");
#elif defined (__WN32)

i->handl e = fopen(i->file_nane,"rb");

#el se
i->handl e = fopen(i->file_nane,"rb");
#endi f
if (i->handle == NULL)
{

[/printf("FILE OPEN FAI LED\n");
print_error(s,s->nput_file,strerror(errno));
audi t _msg(s,"Error: 9%",strerror(errno));
return TRUE;

/1l printf("calling find total file size\n");

i->total _bytes = find_file_size(i->handle);
[lprintf("tot_bytes:=%l\n",i->total _bytes);
search_strean(s,i);

audit _finish(s,i);

fcl ose(i->handl e);
free(i);
return FALSE;

int process_stdin(f_state *s)
f_info *i = (f_info *)malloc(sizeof(f_info));

i->file_nane = strdup("stdin");
s->input_file= "stdin";
i->handl e = stdin;

i->s_stdin = TRUE

/* We can't conpute the size of this stream we just ignore it*/
i->total _bytes = 0;

[lprintf("Starting audit\n");
audit_start(s,i);

[lprintf("calling ss\n");

search_strean(s,i);

104

free(i->fil e_namne)
free(i);
return FALSE;

}

F. DIR.C

#i ncl ude "main. h"

int is_enpty_directory(DI R *tenp)
{

/* Enpty directories contain two entries for . and .

A directory with three entries, therefore, is not enpty */

if (readdir(tenp) && readdir(tenp) && readdir(tenp))
return FALSE;

return TRUE

int make_new directory(f_state *s, char *fn)

{

#ifdef __ WN32
if (nkdir(fn))
#el se
mode_t new_node = (S IRUSR | S IWISR | S_IXUSR
SIRGRP | SIWERP | S |XGRP |
S IROTH | S | WOTH);
if (nkdir(fn, new_node))
#endi f
{

print_error(s,get_output_directory(s),strerror(errno))

return TRUE

}
return FALSE
}
char* clean_time_string(char* tine)
{
int len=strlen(tine)
int i=0

for(i=0;ic<len;i++)

{
#ifdef _ WN32

if(time[i]l=="" || ting[i]==".")
timel[i]="_";
}
else if(tinme[i]==":" && tinme[i+1]!="\\")
timel[i]="_";
}
#el se
if(time[i]=="" || time[i]=="." || time[i]==
timel[i]="_";
}
#endi f
} .
return tine;
}

int create_output_directory(f_state *s)

105

DI R *d;
char dir_name[MAX_STRI NG_LENGTH] ;

menset (di r_name, 0, MAX_STRI NG_LENGTH) ;
strcpy(dir_nane, get_output_directory(s));
strcat(dir_name,"_");

strcat (dir_name, get_start_tine(s));
clean_tinme_string(dir_nane);

set _output _directory(s,dir_nane);
#i f def __ DEBUG

printf ("Checking output directory %\n", get_output_directory(s));
#endi f

if ((d = opendir(get_output_directory(s))) != NULL)

{
/* The directory exists already. It MJST be enpty for us to continue */
if(lis_enpty_directory(d))
printf("TIME = %\n", get_start_tinme(s));
}
/* The directory exists and is enpty. W're done! */
closedir(d);
return FALSE;
}

/* The error val ue ENOENT neans that either the directory doesn't exist,
which is fine, or that the filenane is zero-length, which is bad.
Al'l other errors are, of course, bad. */
if (errno != ENCENT)
{
print_error(s,get_output_directory(s),strerror(errno));
return TRUE;

}
if (strlen(get_output_directory(s)) == 0)

/* Careful! Calling print_error will try to display a fil enane

that is zero characters! In theory this should never happen

as our call to realpath should avoid this. But we'll play it safe. */
print_error(s,"(output_directory)","Qutput directory name unknown");
return TRUE;

}

return (make_new directory(s, get_output_directory(s)));

}

int create_sub_dirs(f_state *s)
{
int i=0;
int j=0;
char dir_name[MAX_STRI NG_LENGTH] ;
char ole_types[6][4]={"ppt", "doc","xIs","sdw', "nmbd", "vis"},
char riff_types[2][4]={"avi", "wav"};

for(i=0;i<s->numbuiltin;i++)

{
menset (di r_nane, 0, MAX_STRI NG_LENGTH- 1) ;
strcpy(dir_name, get_out put_directory(s));
strcat (dir_nane,"/");
strcat (di r_name, search_spec[i].suffix);
make_new _directory(s, dir_nane);
i f(search_spec[i].type==CLE)

for(j=0;j<6;j++)
menset (di r_nane, 0, MAX_STRI NG_LENGTH- 1) ;

106

strcpy(dir_name, get_out put_directory(s));
strcat(dir_nane,"/");

strcat (dir_name, ol e_types[j]);
make_new_directory(s, dir_nane);

}

el se if(search_spec[i].type==RlFF)
for(j=0;j<2;j++)
{

menset (di r_nane, 0, MAX_STRI NG_LENGTH- 1) ;
strcpy(dir_name, get_out put_directory(s));
strcat (dir_name,"/");

strcat(dir_name, riff_types[j]);
make_new _directory(s, dir_nane);

}
return TRUE;
}

int witeToDi sk(f_state *s,s_spec * needle, unsigned long long |en,unsigned char* buf,
unsigned long long t_offset)

{
char fn[MAX_STRI NG_LENGTH] ;
FI LE* f;
long byteswitten = 0;
| ong int bl ock=(t_of fset/s->bl ock_si ze);

//Narmre files based on there bl ock offset

snprintf(fn, MAX_STRI NG LENGTH, " %/ %/ %9*1 d. %",
s->out put _di rectory, needl e->suffi x, 8, bl ock, needl e- >suf fi x);

if(l(f = fopen(fn,"w)))
{

}

#i fdef __WN32
/*We need to EXPLICITLY open the file in binary nmbde for Wn32

this was very annoying to find out ;-)... */
/1 set node(fil eno(fn), O Bl NARY);
#endi f
if ((byteswitten = fwite(buf,sizeof(char),len,f)) !=len)
/ | ERROR
}

if(fclose(f))
{

/* We only say that we wote the file if we were successful. This
statement was originally imediately after the snprintf for the
filenane. Because we use the variable fileswitten el sewhere in
this function I've noved it down here. (JK) */

audi t _msg(s,"%l:\t %d. %",s->fileswitten,bl ock, needl e->suffix);

s->fileswitten++;

needl e- >f ound++;
return TRUE;

107

G. HELPERS.C

-~

ok ok Ok %k 3k ok Ok %k

MDSDEEP - hel pers.c

By Jesse Kornbl um

This is a work of the US Government. In accordance with 17 USC 105,
copyright protection is not available for any work of the US Governnent.
This programis distributed in the hope that it will be useful, but

W THOUT ANY WARRANTY; wi thout even the inplied warranty of

MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE.
/

#i ncl ude "nmain. h"

/* Renpves any newlines at the end of the string buf.

Works for both *nix and Wndows styles of newines.
Returns the new |l ength of the string. */

unsi gned i nt chop(char *buf)

{

}

/* W ndows new ines are 0x0d OxOa, *nix are Ox0a */
unsigned int len = strlen(buf);
if (buf[len-1] == 0x0a)
if (buf[len-2] == 0x0d)
buf[len-2] = buf[len-1];
}
buf [l en-1] = buf[len];

return strlen(buf);

char *units(unsigned int c)

{

}

switch (c) {

return "PB";
return "EB";

case 0: return "B";
case 1: return "KB";
case 2: return "MB";
case 3: return "GB";
case 4: return "TB";
5:
6:

/* Steinbach's Cuideline for Systens Programmi ng:
Never test for an error condition you don't know how to handl e.

Granted, given that no existing systemcan handl e anyt hi ng

nore than 18 exabytes, this shouldn't be an issue. But how do we

communi cate that 'this shouldn't happen' to the user? */
default: return "??";

}

char *human_r eadabl e(of f _t size, char *buffer)

{

unsi gned int count = 0;
while (size > 1024)

{
size /= 1024;
++count ;
}
/* The size will be, at nost, 1023, and the units will be

two characters no matter what. Thus, the maxi mum | ength of
this string is six characters. e.g. strlen("1023 EB") = 6 */
snprintf(buffer,8,"%lu %", size,units(count));

108

return buffer;

}

char *current_tine(void)
{
time_t now = tine(NULL);
char *ascii_tinme = ctine(&ow);
chop(ascii_tine);
return ascii _ting;

/* Shift the contents of a string so that the values after 'new start'’
will now begin at location 'start' */
void shift_string(char *fn, int start, int new start)

if (start <0 || start > strlen(fn) || new.start < 0 || new.start < start)
return;

while (new start < strlen(fn))

fn[start] = fn[new start];
new_start ++;
start ++;

}

fn[start] = 0;

voi d

make_magi c(voi d) {printf("%%", "\ x53\ x41\ x4E\ x20\ x44\ x49\ x4D\ x41\ x53\ x20\ x48\ x49\ x47\ x48\
x20\ x53\ x43\ x48\ x4F\ x4F\ x4C\ x20\ x46\ x4F\ x4F\ x54\ x42\ x41\ x4C\ x4C\ x20\ x52\ x55\ x4C\ x45\ x53\ x
21", NEWLI NE) ; }

#if defined (__UNIX)

/* Return the size, in bytes of an open file stream On error, return 0 */
#if defined (__LINUX)

off _t find_file_size(FILE *f)

{

[lprintf(" Conputing file size\n");
of f_t numsectors = O;
int fd = fileno(f);
struct stat sb;

if (fstat(fd, &sbh))
{
return O;

}

if (S_ISREQ(sh.st_npde) || S_ISD R(sbh.st_node))
return sh.st_size;

else if (S_ISCHR(sbh.st_node) || S_ISBLK(sb.st_node))

if (ioctl(fd, BLKGETSIZE, &num sectors))

{
#if defined(__DEBUG
fprintf(stderr,"%: ioctl call to BLKGETSIZE fail ed. %",
__prognane, NEW.I NE) ;
#endi f
}
el se
return (numsectors * 512);

109

return O;

}
#elif defined (__MACOSX)

#i ncl ude <stdint.h>
#i ncl ude <sys/ioctl.h>
#i ncl ude <sys/ di sk. h>

off t find file_size(FILE *f) {
#i f def DEBUG

printf(" FIND MAC file size\n");
#endi f
return O; [*FI X ME*/

struct stat info;

off _t total = O;

off _t original = ftello(f);
int ok = TRUE, fd = fileno(f);

/* 1'd prefer not to use fstat as it will follow synbolic links. W don't
follow synmbolic links. That being said, all synbolic Iinks *shoul d*
have been caught before we got here. */

fstat(fd, & nfo);

/* Block devices, like /dev/hda, don't return a nornal filesize.
If we are working with a block device, we have to ask the operating
systemto tell us the true size of the device.

The following only works on Linux as far as | know. |f you know
how to port this code to another operating system please contact
the current nmintainer of this program */

if (S_ISBLK(info.st_npde)) {
daddr _t bl ocksize = 0;
daddr _t bl ockcount = O;

/* Get the block size */
if (ioctl(fd, DKI OCGETBLOCKSI ZE, bl ocksize) < 0) {
ok = FALSE;
#i f defined(__DEBUG
perror (" DKI OCGETBLOCKSI ZE fail ed");

#endi f
}
/* Get the nunber of blocks */
if (ok) {

if (ioctl(fd, DKIOCGETBLOCKCOUNT, bl ockcount) < 0) {
#i f defined(__DEBUG
perror (" DKI OCGETBLOCKCOUNT fail ed");
#endi f
}
}

total = blocksize * bl ockcount;

}
el se {

/* 1 don't know why, but if you don't initialize this value you'll
get wildly innacurate results when you try to run this function */

if ((fseeko(f,0, SEEK END)))
return O;

total = ftello(f);

if ((fseeko(f,original,SEEK SET)))
return O;

110

return (total - original);

}

#el se

/* This is code for general UN X systens
(e.g. NetBSD, FreeBSD, OpenBSD, etc) */

static off_t
m dpoint (off_t a, off_t b, long blksize)

off _t aprinme = a / blksize;
off _t bprine = b / blksize;
off _t ¢, cprineg;

cprime = (bprime - aprine) / 2 + aprimne;
c = cprinme * blksize;

return c;

of f _t find_dev_size(int fd, int blk_size)
{

off _t curr = 0, ambunt = 0;
void *buf;

if (blk_size == 0)
return O;

buf = mall oc(bl k_si ze);

for () {

ssize_t nread;

| seek(fd, curr, SEEK SET);
nread = read(fd, buf, blk_size);
if (nread < blk_size) {
if (nread <= 0) {
if (curr == amount) {
free(buf);
| seek(fd, 0, SEEK_ SET);
return anount;
}
curr = mdpoint(anmunt, curr, blk_size);
} else { /* 0 < nread < blk_size */
free(buf);
| seek(fd, 0, SEEK SET);
return anmount + nread;

} else {
amount = curr + bl k_si ze;
curr = anmount * 2;

}
}
free(buf);

| seek(fd, 0, SEEK_SET);
return anount;

off _t find_file_size(FlILE *f)
int fd = fileno(f);

struct stat sb;
return 0; /*FIX ME SOLARI S FI LE SI ZE CAUSES SEG FAULT*/

111

if (fstat(fd, &sbh))
return O;

if (S_ISREQ(sh.st_npde) || S_ISD R(sb.st_node))
return sb.st_size;

else if (S_ISCHR(sh.st_node) || S_|SBLK(sbh.st_node))
return find_dev_size(fd, sb.st_bl ksi ze);

return O;

}

#endif /* UNI X Fl avors */
#endif /* ifdef __UNIX */

#i f defined(__WN32)
off _t find_file_size(FILE *f)

off t total =0, original = ftello(f);

if ((fseeko(f,0,SEEK END)))
return O;

total = ftello(f);
if ((fseeko(f,original, SEEK SET)))
return O;

return total;

}

#endi f /* ifdef __WN32 */

voi d print_search_specs(f_state *s)
{
int i=0;
int j=0;
printf("\nDUVPI NG BU LTI N SEARCH I NFO n\t");
for(i=0;i < s->numbuiltin;i++)

{

printf("%:\n\t footer_len:=%l, header_len:=%, max_len:=%Ilu
",search_spec[i].suffix, search_spec[i].footer_|en, search_spec[i].header_| en, search_spec[i
1. max_len);

printf("\n\t header:\t");

printx(search_spec[i]. header, 0, search_spec[i]. header_|en);

printf("\t footer:\t");

printx(search_spec[i].footer, 0, search_spec[i].footer_len);

for(j=0;j<search_spec[i].num markers;j++)

printf("\tmarker: \t");

printx(search_spec[i].markerlist[j].value,0,search_spec[i].markerlist[j].len);

}
}
void print_stats(f_state *s)
{

int i=0;

audi t _msg(s, "\ nFI LES EXTRACTED\ n\t");
for(i=0;i < s->numbuiltin;i++)

{

i f(search_spec[i].found!=0)

{

i f(search_spec[i].type==0LE) search_spec[i].suffix="ole";

112

el se if(search_spec[i].type==Rl FF)
search_spec[i].suffix="rif";

audit_msg(s,"%: =
%", search_spec[i].suffix, search_spec[i].found);

}

int charactersMatch(char a, char b, int caseSensitive)
{

Ilif(a==b) return 1;

if (a==wldcard || a == b) return 1;

if (caseSensitive || (a<'A || a>"2" || b<'A || b>"2")) return 0;
/* This line is equivalent to (abs(a-b)) =="'a" - 'A */

return (abs(a-b) == 32);
}

int memn | dcardcnp(const void *sl1l, const void *s2, size_t n,int caseSensitive)

if (n!=0)

{ . .
regi ster const unsigned char *pl = sl, *p2 = s2;
do

if(!charactersMatch(*pl++, *p2++, caseSensitive))
return (*--pl - *--p2);
} while (--n !=0);

return(0);
}
voi d printx(unsigned char* buf,int start, int end)
{

int i=0;

for(i=start;i<end;i++)

printf("% ",buf[i]);

}

printf("\n");
}

char* reverseString(char* to,char* fromint startlLocation,int endLocation)

{

int i=endLocati on;
int j=0;
for(j=startLocation;j < endLocation;j++)

to[j]=froni];

return to;
}
unsi gned short htos(unsigned char s[],int endian)
{

unsi gned char* bytes=(unsigned char*) nall oc(sizeof (unsi gned short)*si zeof (char));
unsi gned short size=0;

char tenmp='x';

byt es=mencpy(byt es, s, si zeof (short));

i f (endi an==FOREMOST_BI G_ENDI AN && BYTE_ORDER==L| TTLE_ENDI AN)
{
[lprintf("swtching the byte order\n");
t emp=byt es[0] ;
byt es[0] =byt es[1] ;
byt es[1] =t enp;

113

unsi

unsi

}

}
el se i f(endi an==FOREMOST_L| TTLE_ENDI AN && BYTE_ORDER==BI G_ENDI AN)

t emp=byt es[0] ;
byt es[0] =byt es[1] ;
byt es[1] =t enp;

size = *((unsigned short *)bytes);
free(bytes);
return size;

gnhed int htoi(unsigned char s[],int endian)

int

| engt h=si zeof (i nt);

unsi gned char* bytes=(unsigned char*) mall oc(l ength*sizeof (char));
unsi gned int size=0;

byt es=nmencpy(bytes, s, | ength);

i f (endi an==FOREMOST_BI G_ENDI AN && BYTE_ORDER==L| TTLE_ENDI AN)

{

byt es=reverseStri ng(bytes,s, 0, ength);

}
el se i f(endi an==FOREMOST_L| TTLE_ENDI AN && BYTE_ORDER==BI G_ENDI AN)

{

byt es=reverseStri ng(bytes,s, 0, ength);

size = *((unsigned int*)bytes);

free(bytes);
return size;

gned long long htoll (unsigned char s[],int endian)

int

| engt h=si zeof (1 ong | ong);

unsi gned char* bytes=(unsigned char*) mall oc(length*sizeof(char));
unsi gned int size=0;

byt es=nmenctpy(bytes, s, | ength);

i f (endi an==FOREMOST_BI G_ENDI AN && BYTE_ORDER==L| TTLE_ENDI AN)

byt es=reverseStri ng(bytes,s, 0, ength);

}
el se i f (endi an==FOREMOST LI TTLE_ENDI AN && BYTE_ORDER==BI G_ENDI AN)

{

byt es=reverseStri ng(bytes,s, 0, ength);

size = *((unsigned | ong*)bytes);

free(bytes);
return size;

/* display Position: Tell the user how far through the infile we are */
int displayPosition(f_state* s,f_info *i,unsigned |long |ong pos)

{

int
int
int
int
int

per cent Done=0;
count ;

factor=4;

mul tiplier=25;
nunber _of _st ar s=0;

char buffer[256];

if(i->total _bytes > 0)

{

114

per cent Done = (((doubl e)pos)/ (double)(i->total_bytes) * 100);

}
el se
{
factor=4;
mul tiplier=25;
}

nunber _of _st ar s=per cent Done/ f act or;

printf("%: |",s->input_file);
f or (count =0; count <nunber _of _st ars; count ++)
{

printf("*");

for(count=0; count< (nultiplier-nunber_of _stars); count ++)

{
}

if(i->total _bytes > 0)
{

printf(" ");

printf("|\t %% % done\n", percent Done) ;
else printf("|\t % done\n", human_r eadabl e(pos, buffer));

return TRUE;

}
H. MAIN.C
/* FOREMOST
*
* By Jesse Kornblum and Kris Kendal l
*
* This is a work of the US Government. |n accordance with 17 USC 105,
* copyright protection is not available for any work of the US Governmnent.
*
* This programis distributed in the hope that it will be useful, but
* W THOUT ANY WARRANTY; without even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE.
*
* Modification by Nick Mkus 2-15-05
*
*

-~

#i ncl ude "main. h"

#i fdef __WN32

/* Allows us to open standard input in binary node by default
See http://gnuw n32. sourceforge. net/conpile. htm for nore */

int _CRT_fnode = _O Bl NARY;

#endi f

voi d catch_alarn(int signum

{
si gnal _caught = si gnum
signal (signumcatch_alarm;

}

voi d regi ster_signal _handl er (voi d)

{

si gnal _caught = 0;

if(signal (SIGNT, catch_alarm == SIG |G\
signal (SIG@NT, SIGIGN);

if(signal (SIGTERM catch_alarm == SIG.|GN)
signal (SIGTERM SIG IGN\);

115

#i fndef __ W N32

/* Note: | haven't found a way to get notified of
consol e resize events in Wn32. Right now the statusbar
will be too long or too short if the user decides to resize

their consol e wi ndow while forenost runs.. */
/* RBF - Handle TTY events */
/1 The function setttywidth is in the old hel pers.c
/'l signal (SIGANNCH, setttyw dth);
#endi f
}

void try_msg(void)

fprintf(stderr,"Try "% -h" for nore information. %", _ progname, NEW.I NE);

}

/* The usage function should, at npst, display 22 lines of text to fit
on a single screen */
voi d usage(voi d)

fprintf(stderr,"% version % by %. %", __prognane, VERSI ON, AUTHOR, NEW.I NE) ;

fprintf(stderr,"% % [-v|[-V|-h] [-t <type>] [-s <blocks>] [-k <size>] [-c <file>] [-0
<dir>] [-i <file] %%", CMD_PROWPT, __prognane, NEW.I NE, NEW.| NE) ;

fprintf(stderr,"-V - display copyright information and exit %", NEW.|I NE);

fprintf(stderr,"-t - specify fornmat %", NEW.I NE);

fprintf(stderr,"-i - specify input file (default is stdin) %", NEW.I NE);
fprintf(stderr,"-o - set output directory (defaults to %) %",
DEFAULT_OUTPUT_DI RECTORY, NEW.I NE) ;
fprintf(stderr,"-c - set configuration file to use (defaults to %)%",
DEFAULT_CONFI G_FI LE, NEWLI NE) ;
fprintf(stderr,"-q - enables quiet node. Mdst error nessages are supressed%",
NEWLI NE) ;
/* RBF - WWat should verbose node be? */
fprintf(stderr,"-v - verbose node. Logs all nessages to screen%", NEW.INE);
}
/*
fprintf(stderr,"-0 - use /0 as line term nator%", NEW.I NE);
*
/

voi d process_command_|ine(int argc, char **argv, f_state *s) {
int i;

while ((i=getopt(argc,argv,"o:b:c:t:s:i:k:hgdvww')) I=-1) {
switch (i) {

case 'v':
set _node(s, node_verbose);
br eak;

case 'd':
set _node(s, node_i nd_bl k) ;
br eak;

case 'b':
set _bl ock(s, atoi (optarg));
br eak;

case '0':
set _output _directory(s,optarg);
br eak;

case 'q':
set _node(s, node_qui et);
br eak;

case 'c':
set _config_file(s,optarg);
br eak;

case 'k':
set _chunk(s, atoi (optarg));

116

br eak;

case 's'
set _skip(s,atoi (optarg))
br eak;
case i
set _input_file(s,optarg)
br eak;
case 't'
/*See if we have nultiple file types to define*/
whi | e(1)
{
if(!set_search_def(s,optarg,0))
{
usage();
exit (EXI T_SUCCESS)
}
i f (argv[optind] ==NULL) br eak
if(argvlioptind][0]=="-") break
opt ar g=ar gv[opt i nd]
opti nd++
}
br eak;
case 'h'
usage() ;

exit (EXI T_SUCCESS);

/* RBF - Lowercase 'v' used to be the verbose flag in ol der
versions. Should we keep it as this? */
case 'Ww:

case 'V :
printf ("%%", VERSI ON, NEWL.| NE) ;
/* We could just say printf(COPYRI GHT), but that's a good way
to introduce a format string vulnerability. Better to al ways
use good programming practice... */
printf ("%", COPYRI GHT)
exit (EXI T_SUCCESS);

defaul t:

try_msg();
exit (EXI T_FAI LURE);

}
}

#i f def DEBUG

dunp_state(s);
#endi f

}
int main(int argc, char **argv)

f_state *s = (f_state *)mall oc(sizeof (f_state))
#i fndef __GLIBC__

__prognane = basenane(argv[O0])

#endi f

if (initialize_state(s,argc,argv))
fatal _error(s,"Unable to initialize state")

regi ster_signal _handl er ()
process_command_l i ne(argc, argv, s)
if (load_config_file(s))

//fatal _error(s,"Unable to load config file");

if (create_output_directory(s))

117

fatal _error(s,"Unable to open output directory");
create_sub_dirs(s);

if (open_audit_file(s))
fatal _error(s,"Can't open audit file");

/* Anything left on the conmand line at this point is a file
we' re supposed to process. If there's nothing specified,
we shoul d tackle standard input */

i f(s->numbuiltin==0)

{
printf("ERROR No search specification provided\n");
exit(-1);

}
#i f def DEBUG
print_search_specs(s);
#endi f
if (s->nput_file == NULL)

{
#i f def DEBUG
printf("Processing sdtin\n");
#endi f
process_stdin(s);
}

el se
{

process_file(s);

audit _nsg(s,"Wote % files\n",s->fileswitten);
print_stats(s);

if (close_audit_file(s))
/* Hells bells. This is bad, but really, what can we do about it?
Let's just report the error and try to get out of here! */
print_error(s, AUDI T_FI LE_NAME, "Error closing audit file");

free_state(s);

free(s);
return EXI T_SUCCESS;
}
I. MAIN.H
/* FOREMOST
*
* By Jesse Kornblum
*
* This is a work of the US Government. |n accordance with 17 USC 105,
* copyright protection is not available for any work of the US Governmnent.
*
* This programis distributed in the hope that it will be useful, but
* W THOUT ANY WARRANTY; wi thout even the inplied warranty of
* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE.
*
*/

/| #defi ne DEBUG 1

#i fndef __ FOREMOST_H
#define __FOREMOST H

/* Version information is defined in the Makefile */
#defi ne AUTHOR "Jesse Kornblum Kris Kendall, and Nick M kus"

/* We use \r\n for newines as this has to work on Wn32. It's redundant for
everybody el se, but shouldn't cause any harm */

#define COPYRIGHT "This programis a work of the US Governnent. "\

"I n accordance with 17 USC 105,\r\n"\

118

"copyright protection is not available for any work of the US Governnent.\r\n"\

"This is free software
"warranty; not even for

#define _

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

GNU_SOURCE
<stdio. h>
<stdlib. h>
<limts. h>
<dirent. h>
<errno. h>
<string. h>
<uni std. h>
<time. h>
<mat h. h>
<ctype. h>
<sys/stat.h>
<sys/types. h>
<si gnal . h>

/* For va_arg */

#i ncl ude

#i f def
#i ncl ude
#i ncl ude
#endi f

/* RBF -
#i f def

<stdarg. h>

LI NUX
<sys/ioctl.h>
<sys/ nount . h>

see the source for copying conditions. There is NOr\n"\

MERCHANTABI LI TY or

FI TNESS FOR A PARTI CULAR PURPGCSE. \r\n"

Do we care about being big-endian or little endian? */

L1 NUX

#i f ndef __USE_BSD
#define __ USE BSD

#endi f
#i ncl ude

<endi an. h>

#elif defined (__SOLARIS)

#defi ne Bl G_ENDI AN

4321

#define LI TTLE_ENDI AN 1234

#i ncl ude <sys/isa_defs. h>
#i f def _BlI G_ENDI AN
#def i ne BYTE_ORDER BI G_ENDI AN

#el se

#def i ne BYTE_ORDER LI TTLE_ENDI AN

#endi f

#elif defined (__WN32)

#i ncl ude

#elif defined (__MACOSX)

<sys/ param h>

#i ncl ude <machi ne/ endi an. h>

#endi f

#defi ne TRUE 1
#define FALSE O
#defi ne ONE_MEGABYTE 1048576

/* RBF -

#ifdef

#def i ne
#def i ne
#endi f

Do we need these type definitions? */

SCLARI S

u_int32_t unsi gned i nt
u_int64_t unsi gned | ong

/* The only tine we're *not* on a UNI X systemis when we're on Wndows */
#i fndef __ W N32
#i fndef __UNI X

119

#define __UNI X
#endif /* ifndef __ _UNI X */
#endif /* ifndef __ WN32 */

#ifdef __UNIX
#i ncl ude <libgen. h>

/* This avoi ds conpiler warnings on ol der systens */
int fseeko(FILE *stream off_t offset, int whence);
off _t ftello(FILE *stream;

#defi ne CVMD_PROWPT " $"
#define DI R_SEPARATOR '/’
#defi ne NEWLINE "\ n"

#defi ne LI NE_LENGTH 74
#define BLANK LI NE \

#endif /* #ifdef __UNIX */

/* This allows us to open standard input in binary node by default
See http://gnuw n32. sourceforge. net/conpile. htm for nore */
#i ncl ude <fcntl. h>

/* Code specific to Mcrosoft Wndows */
#ifdef _ WN32

/* By default, Wndows uses long for off_t. This won't do. W
need an unsi gned nunber at m ni num Wndows doesn't have 64 bit
nunbers though. */

#ifdef off_t

#undef of f _t

#endi f

#define of f_t unsigned | ong

#define CVMD_PROWPT "c:\\>"
#define DI R_SEPARATOR "\\'
#define NEWLINE "\r\n"

#defi ne LI NE_LENGTH 72

#def i ne BLANK_LI NE \

/* 1t would be nice to use 64-bit file lengths in Wndows */
#define ftello ftell
#define fseeko fseek

#define snprintf _snprintf
#define u_int32_t unsi gned | ong

/* W create nacros for the Wndows equival ent UNI X functions.
No worries about |Istat to stat; Wndows doesn't have synbolic links */
#define | stat (A B) stat (A B)

#defi ne real path(A, B) _full pat h(B, A, PATH_MAX)

/* Not used in nd5deep anynore, but left in here in case |
ever need it again. Wn32 docunentation searches are evil.
int asprintf(char **strp, const char *fnt, ...);

*/

char *basenane(char *a);

extern char *optarg;

extern int optind;

int getopt(int argc, char *const argv[], const char *optstring);

#endi f [* ifdef _WN32 */

120

/* On non-glibc systens we have to manually set the __prognane variable */
#ifdef __G.IBC__

extern char *__prognane,;

#el se

char *__prognane;

#endi f /* ifdef __GLIBC _ */

#defi ne MAX_STRI NG_LENGTH 1024

/* Modes refer to options that can be set by the user. */

#defi ne node_none 0
#defi ne node_verbose 1<<1
#defi ne node_qui et 1<<2
#defi ne node_i nd_bl k 1<<3
#def i ne MAX_NEEDLES 254
#def i ne NUM_SEARCH_SPEC ELEMENTS 6
#def i ne MAX_SUFFI X_LENGTH 8
#defi ne MAX_FI LE_TYPES 100

#defi ne FOREMOST_NOEXTENSI ON_SUFFI X " NONE"
/* Modes 3 to 31 are reserved for future use. W shouldn't use
nmodes hi gher than 31 as Wn32 can't go that high. */

#def i ne DEFAULT_MODE node_none

#defi ne DEFAULT_CONFI G FI LE "forenost.conf"
#def i ne DEFAULT_OUTPUT_DI RECTORY "out put "
#define AUDI T_FI LE_NAMVE "audit.txt"

#def i ne FOREMOST_DI VI DER e il

#define JPEG 0
#define AF 1
#def i ne BMP
#defi ne MPG
#def i ne PDF
#define DOC
#defi ne AVI
#defi ne WwW
#defi ne HTM
#define ZI P
#define MOV 10
#define XLS 11
#define PPT 12
#define WPD 13
#define CPP 14
#define OLE 15
#define GZIP 16
#define RIFF 17
#defi ne WAV 18
#define VIPEG 19
#defi ne CONF 20

#def i ne KI LOBYTE 1024

#def i ne MEGABYTE 1024 * KI LOBYTE
#defi ne G GABYTE 1024 * MEGABYTE
#def i ne TERABYTE 1024 * G GABYTE
#def i ne PETABYTE 1024 * TERABYTE
#def i ne EXABYTE 1024 * PETABYTE
#define UNI TS_BYTES 0

#define UNI TS_KI LOB 1

#defi ne UNI TS_MEGAB 2

#define UNI TS_G GAB 3

#defi ne UNI TS_TERAB 4

#define UNI TS_PETAB 5

#defi ne UNI TS_EXAB 6

121

#def i ne SEARCHTYPE_FORWARD 0
#def i ne SEARCHTYPE_REVERSE 1
#def i ne SEARCHTYPE_FORWARD_NEXT 2

#def i ne FOREMOST_BI G_ENDI AN 0
#def i ne FOREMOST_LI TTLE_ENDI AN 1
/*DEFAULT CHUNK SI ZE I n MB*/
#def i ne CHUNK_SI ZE 100

/* Wldcard is a global variable because it's used by very sinple
functions that don't need the whole state passed to them*/

State Variabl e and d obal Vari abl es
char wldcard;
typedef struct f_state

of f _t node;

char *config_file;

char *input_file;

char *output_directory;
char *start_tine;

char *invocation;

char *audit _fil e_naneg;
FILE *audit_file;

int audit_file_open;

nt numbuiltin;

nt chunk_size; /*IN MB*/
nt fileswitten;

nt bl ock_si ze;

nt skip;

} f_state;
typedef struct marker

char* val ue;

int len;
size_t marker_bm tabl e[UCHAR_MAX+1] ;
} mar ker ;

typedef struct s_spec

char* suffix;
int type;
unsi gned | ong | ong max_| en;

char* header;
unsi gned i nt header _| en;
size_t header_bm t abl e[UCHAR MAX+1] ;

char* footer;

unsi gned int footer_len;

size_t footer_bmtabl e[UCHAR MAX+1] ;
mar ker markerlist[5];

int num_nmarkers;

int searchtype;

int case_sen;

int found,
}s_spec;

s_spec search_spec[50]; /*ARRAY OF BU LTI N SEARCH TYPES*/
typedef struct f_info {

char *fil e_nane;
of f _t total _bytes;

122

/* W never use the total nunber of bytes in a file,

only the nunber of negabytes when we display a tine estimate */
of f _t total _negs;
of f _t bytes_read;

#i fdef __WN32
/* Wn32 is a 32-bit operating systemand can't handle file sizes
larger than 4GB. W use this to keep track of overflows */
of f _t last_read;
of f _t overflow count;
#endi f

FI LE *handl e;
int is_stdin;
} f_info;

/* Set if the user hits ctrl-c */
int signal _caught;

/* State functions */

int initialize state(f_state *s, int argc, char **argv);
void free_state(f_state *s);

char *get_invocation(f_state *s);
char *get _start_time(f_state *s);

int set_config_file(f_state *s, char *fn);
char* get_config_ file(f_state *s);

int set_output_directory(f_state *s, char *fn);
char* get_output_directory(f_state *s);

void set_audit_file_open(f_state *s);
int get_audit_file_ open(f_state *s);

voi d set_node(f_state *s, off_t new_node);
int get_node(f_state *s, off_t check_node);

int set_search_def(f_state *s,char* ft,unsigned long |long nax_file_size);
voi d get_search_def (f_state s);

void set _input_file(f_state *s,char* filenane);
void get_input_file(f_state *s);

voi d set_chunk(f_state *s, int size);

void init_bmtable(char *needle, size_t table[UCHAR MAX + 1], size_t len, int
casesensitive,int searchtype);

voi d set_skip(f_state *s, int size);
voi d set_bl ock(f_state *s, int size);

#i fdef __ DEBUG
voi d dunp_state(f_state *s);
#endi f

/* The audit file */

int open_audit _file(f_state *s);

void audit_msg(f_state *s, char *format, ...);
int close_audit_file(f_state *s);

/* Set up our output directory */
int create_output_directory(f_state *s);

123

int witeToDi sk(f_state *s,s_spec * needl e, unsi gned | ong |ong | en, unsigned char* buf,
unsi gned | ong | ong

t_offset);
int create_sub_dirs(f_state *s);

/* Configuration Files */
int load_config_ file(f_state *s);

/* Hel per functions */

char *current_tine(void);

off _t find_file_size(FILE *f);

char *human_r eadabl e(of f _t size, char *buffer);

char *units(unsigned int c);

unsi gned i nt chop(char *buf);

voi d print_search_specs(f_state *s);

int nmemm | dcardcnp(const void *sl1l, const void *s2,size_t n,int caseSensitive);
int charactersMatch(char a, char b, int caseSensitive);

voi d printx(unsigned char* buf,int start, int end);

unsi gned short htos(unsigned char s[],int endian);

unsi gned int htoi(unsigned char s[],int endian);

unsi gned long | ong htoll (unsigned char s[],int endian);

int displayPosition(f_state* s,f_info* i,unsigned |ong |ong pos);

/* Interface functions
These functions stay the sane regardless if we're using a
command line interface or a GU */
void fatal _error(f_state *s, char *mnsg);
void print_error(f_state *s, char *fn, char *nsg);
voi d print_message(f_state *s, char *format, va_list argp);
void print_stats(f_state *s);

/* Engine */
int process _file(f_state *s);
int process_stdin(f_state *s);
unsi gned char *bm search(char *needl e, size_t needle_len,unsigned char *haystack, size_t
hayst ack_| en,

size_t tabl e[UCHAR MAX + 1], int case_sen,int searchtype);
unsi gned char *bm search_ski pn(char *needl e, size_t needl e_l en,unsigned char *haystack,
size_t haystack_| en,

size_t tabl e[UCHAR MAX + 1], int casesensitive,int searchtype, int start_pos)
#endif /* _ FOREMOST_H */

/* BUILTIN */
char* extractFile(f_state *s, unsigned long |long c_offset, char *foundat, unsigned |ong
I ong buflen, s_spec * needl e, unsigned long |long f_offset);

J. CONFIG.C

#i ncl ude "main. h"

int translate(char *str)

{
char next;
char *rd=str,*w=str, *bad;
char tenp[1+3+1];

char ch;
if(!*rd) //1f it's a null string just return
return O;
}
while (*rd)
{
/* Is it an escaped character ? */
if (*rd=="\\")
{
rd++;

124

switch(*rd)

case '"\\':
*rd++;
wr++=t A\
br eak;
case 'a':
*rd++;
*wH+=t\a'
br eak;
case 's':
*rd++;
W ++="
br eak;
case 'n':
*rd++;
*wr++=t\n'
br eak;
case 'r'
*rd++;
WA=\
br eak;
case 't'
*rd++;
*wr++=t A\t
br eak;
case 'v':
*rd++;
W=\ v
br eak;
/* Hexadeci mal /Cctal values are treated in one place using strtoul () */
case 'x':
case '0': case '"1': case '2': case '3':
next = *(rd+1);
if (next < 48 || (57 < next && next < 65) ||
(70 < next && next < 97) || next > 102)
br eak; //break if not a digit or a-f, AF
next = *(rd+2);
if (next < 48 || (57 < next && next < 65) ||
(70 < next && next < 97) || next > 102)
br eak; //break if not a digit or a-f, AF

temp[0] ="' 0'; bad=tenp;
strncpy(tenp+1,rd, 3);
temp[4] = '\0";
ch=strtoul (tenp, &ad, 0);
if (*bad=="\0")

{
*wWr ++=ch;
rd+=3,
} /* el se | NVALI D CHARACTER | N | NPUT
("\\'" followed by *rd) */
br eak;
defaul t: /* I NVALI D CHARACTER I N I NPUT (*rd)*/
e
br eak;

}

/* Unescaped characters go directly to the output */
el se *wr++=*r d++;

*wo="\0"; //Nul'l terminate the string that we

just created...
return w-str;
}

char* ski pwWi t eSpace(char* str)

whil e (isspace(str[0]))
Str++;

125

return str;

}
int extract SearchSpecData(f_state *state, char **tokenarray)
{
/* Process a normal line with 3-4 tokens on it

token[0] = suffix

token[1] = case sensitive

token[2] = size to snarf

token[3] = begintag

token[4] = endtag (optional)

token[5] = search for footer fromback of buffer flag and other options (whew)
*/
/* Allocate the nmenory for these lines.... */

s_spec *s=&search_spec[state->numbuiltin];

s->suffix = mal | oc(MAX_SUFFI X_LENGTH*si zeof (char));
s->header = mall oc(MAX_STRI NG_LENGTH*si zeof (char));
s->f oot er = mal | oc(MAX_STRI NG_LENGTH*si zeof (char));
s->t ype= CONF;
if (!strncasecnp(tokenarray[O0],

FOREMOST_NOEXTENSI ON_SUFFI X,

st r| en(FOREMOST_NCEXTENSI ON_SUFFI X)))

{
s->suffix[0] =
s->suffix[1] = O;
}
el se
{

/* Assign the current line to the SearchSpec object */
menmcpy(s->suffix, tokenarray[0], MAX_SUFFI X_LENGTH) ;

/* Check for case sensitivity */
s->case_sen = (!strncasecnp(tokenarray[1],"y",1) ||
I'strncasecnp(tokenarray[1], "yes", 3));

s->max_| en = atoi (tokenarray[2]);

/* Determine which search type we want to use for this needle */
s->sear chtype = SEARCHTYPE_FORWARD;
if (!strncasecnp(tokenarray[5],"REVERSE", strlen("REVERSE")))

{

s->sear cht ype = SEARCHTYPE_REVERSE;
}
else if (!strncasecnp(tokenarray[5],"NEXT",strlen("NEXT")))
{

s->sear chtype = SEARCHTYPE_FORWARD_NEXT;

/1 this is the default, but just if soneone wants to provide this value just to be sure
else if (!strncasecnp(tokenarray[5],"FORWARD', strlen("FORWARD")))
{

}

/* Done determ ning searchtype */

s->sear chtype = SEARCHTYPE_FORWARD;

/* We copy the tokens and translate themfromthe file fornat.
The translate() function does the translation and returns
the length of the argunment being translated */

s->header _| en = transl ate(tokenarray[3]);
mencpy(s- >header, t okenarray[3], s- >header _| en) ;
s->footer_Ilen = transl ate(tokenarray[4]);
mencpy(s->f oot er, t okenarray[4], s->footer_l en);

126

init_bmtabl e(s->header, s- >header _bm t abl e, s- >header _| en, s->case_sen, s->searchtype);
init_bmtabl e(s->footer,s->footer_bmtable,s->footer_|en,s->case_sen, s->searchtype);

return TRUE;

int process_line(f_state *s, char *buffer, int |ine_nunber)

char* buf = buffer;

char* token;

char** tokenarray = (char **) mall oc(6*sizeof (char[MAX_STRI NG_LENGTH]));
int i =0, len = strlen(buffer);

/* Any line that ends with a CTRL-M (0x0d) has been processed
by a DOS editor. We will chop the CTRL-Mto ignore it */
if (buffer[len-2] == 0x0d && buffer[len-1] == 0x0a)

buffer[len-2]
buffer[len-1]

buffer[len-1];
buffer[len];

}

buf = (char*) ski pwiteSpace(buf);
token = strtok(buf,"” \t\n");
/lprintf("processing line.5\n");
/* Any line that starts with a '# is a comment and can be ski pped */
if(token == NULL || token[0] == "#")
{
return TRUE;

[lprintf("processing linel\n");
/* Check for the w ldcard */
if (!strncasecnp(token,"wldcard",9))

{
if ((token = strtok(NULL," \t\n")) != NULL)
{

transl at e(t oken);
}
el se

{
}

if (strlen(token) > 1)

return TRUE;

fprintf(stderr,"Warning: WIldcard can only be one character,"
" but you specified % characters.\n"
" Using the first character, \"%\", as the wldcard.\n",
strlen(token), token[0]);
}

wi l dcard = token[O0];
return TRUE;

[lprintf("processing line2\n");
while (token && (i < NUM SEARCH SPEC _ELEMENTS))

tokenarray[i] = token;
i ++;
token = strtok(NULL," \t\n");

[lprintf("processing |ine3\n");
swi t ch(NUM_SEARCH SPEC ELEMENTS-i)
{
case 2:
t okenar r ay[NUM_SEARCH SPEC_ELEMENTS- 1]
t okenar r ay[NUM_SEARCH SPEC ELEMENTS- 2] "
br eak;
case 1:

127

t okenarray[NUM_SEARCH_SPEC _ELEMENTS-1] = "";
br eak;
case 0:
br eak;
defaul t:
fprintf(stderr,"\nERROR In line % of the configuration
file.\n",line_nunber);
return FALSE;
return TRUE;

}

/lprintf("processing line4\n");
i f(!extract SearchSpecDat a(s, tokenarray))

fprintf(stderr,
"\ NERROR: Unknown error on line %l of the configuration
file.\n",line_nunber);

}

s->num bui l tin++;

return TRUE;
}

int load_config file(f_state *s)

FI LE *f;
char* buffer = (char *)nmall oc(MAX_STRI NG LENGTH * si zeof (char));
of f _t line_nunber = O;

#i fdef __DEBUG
printf ("About to open config file %%", get_config file(s), NEWINE);
#endi f

if ((f = fopen(get_config file(s),"r")) == NULL)

{
set _config file(s,"/etc/forenopst.conf");
if ((f = fopen(get_config file(s),"r")) == NULL)
print_error(s,get_config file(s),strerror(errno));
free(buffer);
return TRUE;
}
}

whi |l e (fgets(buffer, MAX_STRI NG LENGTH, f))
{

++l i ne_nunber ;
if (!process_line(s,buffer,line_nunber))

free(buffer);

fclose(f);
return TRUE;
}
}
fclose(f);

free(buffer);
return FALSE;

K. STATE.C
#i ncl ude "nmain. h"

128

int initialize_state(f_state *s, int argc, char **argv)

{

char **argv_copy = argv;

/* The routines in current_time return statically allocated nenory.
We strdup the result so that we don't accidently free() the wong
thing later on. */

s->start _time = strdup(current_tinme());

wi | dcard=""?";

s->audit _fil e_open = FALSE;

s->npde = DEFAULT_MODE;

s->i nput _fil e=NULL;

s->fileswitten=0;

s->bl ock_si ze=512;

/* We use the setter fuctions here to call realpath */

set _config_file(s, DEFAULT_CONFI G FI LE);

set _out put _directory(s, DEFAULT_QUTPUT_DI RECTORY) ;

s->i nvocation = (char *)mall oc(sizeof(char) * MAX_STRI NG _LENGTH);

s->i nvocation[0] = O;

s->chunk_si ze=CHUNK_SI ZE;

s->num bui | ti n=0;

s- >ski p=0;

do

{
strncat (s->i nvocati on, *argv_copy, MAX_STRI NG_LENGTH- st rl en(s->i nvocation));
strncat (s->i nvocation," ", MAX_STRI NG_LENGTH strl en(s->i nvocation));
++ar gv_copy;

} while (*argv_copy);

return FALSE;
}

void free_state(f_state *s)
free(s->start_tine);

free(s->output_directory);
free(s->config file);

}
int get_audit _file_open(f_state *s)
{
return (s->audit_file_open);
}

char *get_invocation(f_state *s)

return (s->invocation);

}
char *get_start_time(f_state *s)

return (s->start_tine);

}
char* get_config file(f_state *s)
{
return (s->config_file);
}

int set_config file(f_state *s, char *fn)

char tenp[PATH_MAX] ;

/* If the configuration file doesn't exist, this realpath will return
NULL. We don't error check here as the user may specify a file
that doesn't currently exist */

129

real path(fn,tenp);

/* RBF - Does this create a nenory | eak? What happens to the old value? */
s->config_file = strdup(tenp);
return FALSE;

char* get_output_directory(f_state *s)

return (s->output_directory);

}

int set_output_directory(f_state *s, char *fn)
{

char tenp[PATH_MAX] ;

/* We don't error check here as it's quite possible that the
output directory doesn't exist yet. If it doesn't, realpath
resolves the path correctly, but still returns NULL. */

real path(fn,tenp);

/* RBF - Does this create a nenory | eak? What happens to the old value? */
s->out put _directory = strdup(tenp);
return FALSE;

}

int get_node(f_state *s, off_t check_node)

return (s->npde & check_node);

}
voi d set_node(f_state *s, off_t new_node)
{
s->node | = new_nvode;
}

voi d set_chunk(f_state *s, int size)
s->chunk_si ze = si ze;

voi d set_skip(f_state *s, int size)

{

s->skip = size;
voi d set_bl ock(f_state *s, int size)

s->bl ock_si ze = si ze;

}

void wite_audit_header (f_state *s)
{
audit _nsg(s, "Forenpst version % by %", VERSI O\, AUTHOR) ;
audi t _msg(s, "Audit File");
audit _msg(s,"");
audit _nsg(s, "Forenost started at %", get_start_tinme(s));
audit _nsg(s, "I nvocation: %", get_invocation(s));
audit _msg(s, "Qutput directory: %", get_output_directory(s));
audit _msg(s,"Configuration file: %", get_config_file(s));

}
int open_audit_file(f_state *s)
char fn[MAX_STRI NG_LENGTH] ;

snprintf (fn, MAX_STRI NG LENGTH, " %% %" ,
get _out put _di rect ory(s), DI R_SEPARATOR, AUDI T_FI LE_NAME) ;

if ((s->audit_file = fopen(fn,"w')) == NULL)
{

print_error(s,fn,strerror(errno));
fatal _error(s,"Can't open audit file");

130

}

s->audit_file_open = TRUE;
write_audit_header(s);

return FALSE;

int close_audit_file(f_state *s)

{

printf("Cosing the audit file\n");

audi t _nmsg(s, FOREMOST_DI VI DER) ;

audi t _msg(s,"");

audit _nsg(s, "Forenpst finished at %", current_tine());

if (fclose(s->audit_file))

print_error(s, AUDI T_FI LE _NAME, strerror(errno));
return TRUE;

}

return FALSE;

voi d audit_mnsg(f_state *s, char *format, ...)

{

va_list argp;
va_start (argp, format);

if (get_node(s, node_verbose))
print_message(s, format, argp);

viprintf (s->audit_file, format, argp);
va_end(argp);

fprintf(s->audit_file,"%", NEWI NE);

void set_input_file(f_state *s,char* fil enane)

{

}

int initBuiltin(f_state *s,int type,char* suffix, char* header,char* footer,int

s->input _file=(char *) malloc((strlen(filenane)+1)*sizeof(char));
strncpy(s->input_file, filenane,strlen(filenane)+1);

header _l en,int

{

footer_Il en,unsigned long long max_len ,int case_sen)

int i=s->numbuiltin;

search_spec[i].type=type;

search_spec[i].suffix =(char *) malloc(strlen(suffix)*sizeof(char));
sear ch_spec[i].num mar ker s=0;

strcpy(search_spec[i].suffix,suffix);

search_spec[i]. header _| en=header _| en;
search_spec[i].footer_| en=footer_|en;

search_spec[i].max_| en=max_| en;
search_spec[i].found=0;

search_spec[i].header = (char *) nmalloc(search_spec[i].header_|en*sizeof (char));
search_spec[i].footer = (char *) nalloc(search_spec[i].footer_|len*sizeof(char));

search_spec[i].case_sen=case_sen;

mencpy(search_spec[i]. header, header, search_spec[i]. header_|en);
mencpy(search_spec[i].footer, footer, search_spec[i].footer_len);

131

init_bmtabl e(search_spec[i].header, search_spec[i].header_bmtabl e, search_spec[i]. header _
| en, search_spec[i].case_sen, SEARCHTYPE_FORWARD) ;

init_bmtable(search_spec[i].footer,search_spec[i].footer_bmtable, search_spec[i].footer_
| en, search_spec[i].case_sen, SEARCHTYPE_FORWARD) ;
s->num bui l tin++;

return i;

voi d addMarker (f_state *s,int index, char* marker,int markerl ength)
{

int i=search_spec[index].num narKkers;

i f(mar ker ==NULL)

{

sear ch_spec[i ndex] . num mar ker s=0;

return;

search_spec[index].markerlist[i].len=markerl ength;
search_spec[index].markerlist[i].val ue = (char*)
mal | oc(search_spec[index].markerlist[i].l|en*sizeof(char));

mencpy(search_spec[index]. markerlist[i].val ue, marker, search_spec[index]. markerli
st[i].len);

init_bmtable(search_spec[index].markerlist[i].val ue, search_spec[index]. markerli
st[i].marker_bmtabl e, search_spec[index].markerlist[i].I|en, TRUE, SEARCHTYPE_FORWARD) ;
sear ch_spec[i ndex] . num marker s++;

void initAll (f_state *state)
{
int index=0;
initBuiltin(state, JPEG "jpg", "\ xff\xd8\ xff", "\ xff\xd9", 3,2, 2* MEGABYTE, TRUE) ;
initBuiltin(state,dF, "gif", "\ x47\ x49\ x46\ x38", "\ x00\ x3b", 4, 2, MEGABYTE, TRUE) ;
initBuiltin(state, BVP, "bnmp","BM', NULL, 2, 0, 2* MEGABYTE, TRUE) ;
initBuiltin(state, WW, "wm/", "\ x30\ x26\ xB2\ x75\ x8E\ x66\ xCF\ x11", "\ xAl\ xDC\ xAB\ x8C
\ x47\ xA9", 8, 6, 40* MEGABYTE, TRUE) ;
initBuiltin(state, MOV, "mov", "nmoov", NULL, 4, 0, 40* MEGABYTE, TRUE) ;
initBuiltin(state, RIFF, "rif","RI FF", "I NFO', 4, 4, 20* MEGABYTE, TRUE) ;
initBuiltin(state, HTM "htni', "<htm ", "</ htnl >", 5, 7, MEGABYTE, FALSE) ;
initBuiltin(state, OLE, "ol e", "\ xdO\ xcf\ x11\ xeO\ xal\ xb1\ x1a\ xel\ x00\ xO0\ x00\ x00\ x0
0\ x00\ x00\ x00", NULL, 16, 0, 5* MEGABYTE, TRUE) ;
initBuiltin(state, ZI P, "zip", "\ x50\ x4B\ x03\ x04", "\ x4b\ x05\ x06\ x00", 4, 4, 100* MEGABY
TE, TRUE) ;

i ndex=i ni tBuiltin(state, MPG "npg", "\ x00\ x00\ x01\ xba", "\ x00\ x00\ x01\ xb9", 4, 4, 50* MEGABYTE, T
RUE) ;
addMar ker (st at e, i ndex, "\ x00\ x00\ x01", 3) ;

i ndex=i ni tBuiltin(state, PDF, "pdf", "9%DF-1.", " 9%&CF", 7, 5, 40* MEGABYTE, TRUE) ;
addMar ker (state, index,"/L ", 3);

addMar ker (st at e, i ndex, "obj ", 3);

addMar ker (st at e, i ndex, "/ Li neari zed", 11);

addMar ker (st at e, i ndex, "/ Length", 7);

int set_search_def(f_state *s,char* ft,unsigned |ong | ong max_fil e_size)

{
int index=0;
if(stremp(ft,"jpg")==0 || strcnp(ft,"jpeg")==0)

if(max_file_size==0) max_file_si ze=2* MEGABYTE;
initBuiltin(s,JPEG"jpg","\xff\xd8\ xff","\xff\xd9", 3,2, max_file_size, TRUE);

}
else if(strenmp(ft,"gif")==0)
{
if(max_file_size==0) max_file_size=1* MEGABYTE;

132

initBuiltin(s,dF, "gif","\x47\x49\ x46\ x38", "\ x00\ x3b", 4, 2, max_fil e_si ze, TRUE);

}
else if(strenp(ft,"bmp")==0)
{

if(max_file_size==0) max_file_si ze=2* MEGABYTE;
initBuiltin(s, BMP, "bmp","BM, NULL, 2, 0, max_fil e_si ze, TRUE);
}
else if(strenmp(ft,"nmpg")==0 || strcnp(ft, "npeg")==0)

if(max_file_size==0) max_fil e_size=50* MEGABYTE;
/120000000 \ x00\ x00\ x01\ xb3 \ X00\ x00\ x01\ xb7 //system dat a

i ndex=initBuiltin(s, MPG "npg", "\ x00\ x00\ x01\ xba", "\ x00\ x00\ x01\ xb9", 4, 4, max_fil e_si ze, TRU
B);

addMar ker (s, i ndex, "\ x00\ x00\ x01", 3);

/*

addMar ker (s, i ndex, "\ x00\ x00\ x01\ xBB", 4) ;

addMar ker (s, i ndex, "\ x00\ x00\ x01\ xBE", 4) ;

addMar ker (s, i ndex, "\ x00\ x00\ x01\ xB3", 4) ;

*/

}
else if(strenmp(ft,"wmn")==0)
{

if(max_file_size==0) max_file_size=20* MEGABYTE;

initBuiltin(s, WA, "wm", "\ x30\ x26\ xB2\ x75\ x8E\ x66\ xCF\ x11", "\ xAl\ xDC\ xAB\ x8C\ x47\ xA9", 8, 6
,max_file_size, TRUE);

}
else if(strenp(ft, "avi")==0)

{
if(max_file_size==0) max_file_size=20* MEGABYTE;
initBuiltin(s, AVI,"avi","RIFF", "I NFO', 4,4, max_fil e_si ze, TRUE) ;
}
(else if(stremp(ft,"riff")==0)

if(max_file_size==0) max_file_si ze=20* MEGABYTE;
initBuiltin(s,RIFF,"rif","RIFF","I NFO', 4, 4, max_fil e_si ze, TRUE) ;

else if(strcmp(ft,"wav")==0)
{

if(max_file_size==0) max_file_size=20* MEGABYTE;
initBuiltin(s, WAV, "wav","RIFF", "I NFO', 4,4, max_fil e_si ze, TRUE);

}
else if(strenmp(ft,"htm ")==0 || strcnp(ft,"htn)==0)

{
if(max_file_size==0) max_fil e_si ze=1* MEGABYTE;
initBuiltin(s, HTM "htnt',"<htm ", "</ htm >",5, 7, max_fil e_si ze, FALSE) ;
}
else if(strenp(ft,"ole")==0 || strcnp(ft,"office")==0)
{

if(max_file_size==0) max_file_si ze=10* MEGABYTE;

initBuiltin(s, OLE, "ol e", "\ xdO\ xcf\x11\ xe0\ xal\ xb1\ x1a\ xel\ x00\ xO0\ xO0\ x00\ x0O0\ x00\ x00\ x00
", NULL, 16, 0, max_fil e_si ze, TRUE);
}

else if(strcnp(ft,"doc")==0)
{

133

if(max_file_size==0) max_file_size=20* MEGABYTE;

initBuiltin(s,DCC "doc", "\ xd0\xcf\x11\xe0\ xal\ xbl\ xla\ xel\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00
", NULL, 16, 0, max_fil e_si ze, TRUE);

}
else if(stremp(ft, "xls")==0)
if(max_file_size==0) max_fil e_size=10* MEGABYTE;

initBuiltin(s, XLS,"xls","\xd0\xcf\x11\xe0\ xal\xbl\xla\xel\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00
", NULL, 16, 0, max_fil e_si ze, TRUE);

}
else if(strcnp(ft,"ppt")==0)
{
if(max_file_size==0) max_file_size=10* MEGABYTE;

initBuiltin(s,PPT,"ppt","\xdO\xcf\x11\xe0\xal\xbl\xla\xel\ x00\ x00\ x00\ x00\ x00\ x00\ x00\ x00
", NULL, 16, 0, max_fil e_si ze, TRUE);

}
else if(strenmp(ft,"zip")==0 || strcnp(ft,"jar")==0)

if(max_file_size==0) max_fil e_si ze=100* MEGABYTE;
initBuiltin(s,ZlI P, "zip","\x50\x4B\ x03\ x04", "\ x4b\ x05\ x06\ x00", 4, 4, max_fil e_si ze, TRUE) ;

else if(stremp(ft,"gzip")==0 || strcmp(ft,"gz")==0)

if(max_file_size==0) max_fil e_si ze=100* MEGABYTE;

initBuiltin(s, &P, "gz","\x1F\ x8B", "\ x00\ x00\ x00\ x00", 2, 4, max_fil e_si ze, TRUE);
}
else if(strenp(ft, " pdf")==0)
if(max_file_size==0) max_file_si ze=20* MEGABYTE;
i ndex=i ni tBuiltin(s, PDF, "pdf","9%DF-1.", " %®&O-", 7,5, max_fil e_size, TRUE);
addMar ker (s, index,"/L ", 3);
addMar ker (s, i ndex, "obj ", 3);
addMar ker (s, i ndex, "/ Li neari zed", 11) ;
addMar ker (s, i ndex, "/ Length",7);
else if(strcmp(ft,"vjpeg")==0)

if(max_file_size==0) wmax_file_size=40* MEGABYTE;
initBuiltin(s, VIPEG "nmov", "pnot", NULL, 4, 0, mex_fil e_si ze, TRUE) ;

else if(stremp(ft, " nmov")==0)
if(max_file_size==0) max_fil e_size=40* MEGABYTE;
initBuiltin(s, MV, "nov", "noov", NULL, 4, 0, max_fil e_size, TRUE);
};el se if(strcnp(ft, "wpd")==0)
if(max_file_size==0) max_file_si ze=1* MEGABYTE;
initBuiltin(s, WD, "wpd", "\ xff\x57\ x50\ x43", NULL, 4, 0, max_fil e_si ze, TRUE);
LI se if(strcnp(ft, "cpp")==0)
if(max_file_size==0) max_fil e_si ze=1* MEGABYTE;

i ndex=i ni tBuiltin(s,CPP,"cpp","#i nclude","char", 8,4, max_file_size, TRUE);
addMar ker (s, i ndex,"int", 3);

134

else if(stremp(ft,"all")==0)
initAll(s);

el se

{

}
return TRUE;

return FALSE;

}

void init_bmtable(char *needle, size_t table[UCHAR MAX + 1], size_t len, int
casesensitive,int searchtype)

{
size_t i=0,j=0,currentindex=0;
for (i = 0; i <= UCHAR_MAX; i ++)
table[i] = len;
for (i =0; i <len; i++)
{
i f (searchtype == SEARCHTYPE_REVERSE)
{
currentindex = i; /11f we are running our searches
backwar ds
//we count fromthe beginning of the string
}
el se
{ . . .
currentindex = len-i-1; /1 Count fromthe back of string
}
if(needle[i] == wildcard) //No skip entry can advance us past the

last wildcard in the string

for(j=0; j<=UCHAR_MAX; | ++)
table[j] = currentindex;

—

bl e[(unsi gned char)needl e[i]] = currentindex;
(!casesensitive)

a
f

-~ -

//RBF - this is alittle kludgy but it works and this isn't the part
//of the code we really need to worry about optimzing...
//1f we aren't case sensitive we just set both the upper and | ower case
/lentries in the junp table.

tabl e[tol ower(needl e[i])] = currentindex;

tabl e[toupper (needl e[i])] = currentindex;

#i f def __DEBUG
voi d dunp_state(f_state *s)
{

printf ("Current state:\n");

printf ("Config file: %\n", s->config_file);

printf ("Qutput directory: %\n", s->output_directory);
printf ("Mde: %1u\n", s->node);

}
#endi f

L. CLI.C

#i ncl ude "nmain. h"

void fatal _error(f_state *s, char *nsgQ)

{
135

fprintf(stderr,"%: 9%%", __prognanme, nsg, NEW.I NE);
if (get_audit_file_open(s))

audi t _nsg(s, nmsgQ);
close_audit_file(s);

}
exi t (EXI T_FAI LURE) ;
}

void print_error(f_state *s, char *fn, char *nsg)

if (!(get_node(s, node_quiet)))
fprintf (stderr,"%: %: %%", __prognhane, fn, nsg, NEW.I NE) ;

voi d print_message(f_state *s, char *format, va_list argp)

viprintf(stdout,format, argp);
fprintf(stdout," %", NEW.INE);

M. FOREMOST.CONF

Forenmost configuration file

The configuration file is used to control what types of files forenost
searches for. A sanple configuration file, forenost.conf, is included with
this distribution. For each file type, the configuration file describes
the file's extension, whether the header and footer are case sensitive,
the maximum file size, and the header and footer for the file. The footer
field is optional, but header, size, case sensitivity, and extension are
not!

Any line that begins with a '# is considered a comment and ignored. Thus,
to skip a file type just put a '# at the beginning of that |ine

HHEHFHFHFEHFFHHHFH R

Headers and footers are decoded before use. To specify a value in
hexadeci mal use \x[0-f][O-f], and for octal use \[0-3][0-7][0-7]. Spaces
can be represented by \s. Exanple: "\x4F\123\I\sCCl" decodes to "OSI CCl".

To match any single character (aka a wildcard) use a '?'. If you need to
search for the '?" character, you will need to change the 'w ldcard |Iine
and every occurrence of the old wildcard character in the configuration
file. Don't forget those hex and octal values! '?'" is equal to O0x3f and

\ 063.

If you would like to extract files w thout an extension enter the val ue
"NONE" in the extension colum (note: you can change the value of this
"no suffix" flag by setting the variabl e FOREMOST_NOEXTENSI ON_SUFFI X

in forenost.h and reconpiling).

The REVERSE keyword after a footer instructs forenpst to search backwards
starting from[size] bytes in the extraction buffer and working towards the
beginning. This is useful for files like PDF's that have nultiple copies of
the footer throughout the file. Wen using the REVERSE keyword you w ||
extract bytes fromthe header to the LAST occurence of your footer within the
wi ndow determ ned by the [size] of your extraction.

The NEXT keyword after a footer instructs forenpst to search forwards for data
that starts with the header provided and termnates or is followed by data in
the footer -- the footer data is not included in the output. The data in the
footer, when used with the NEXT keyword effectively allows you to search for

136

HHEFHBHFHFFFEHFFFFEHFEFE TR

HoHHHH

H HHH*

#
#

HHFHBFHFHFHFEHFFFFE TR

HHEHFHFHFHFHFEHFFFFEHFFF TR TSR

data that you know for sure should not be in the output file. This nethod for
exanple, lets you search for two 'starting’ headers in a docunent that doesn't
have a good ending footer and you can't say exactly what the footer is, but
you know i f you see another header, that should end the search and an out put
file should be witten.

To redefine the wildcard character, change the setting bel ow and all
occurances in the fornost.conf file.

wi | dcard ?

case si ze header footer
ext ensi on sensitive

Here is an exanple of how to use the no extension option. Any files
contai ning the string "FOREMOST" woul d be extracted to a file w thout
an extension (eg: 00000000, 00000001)

NONE y 1000 FOREMOST

AOL ART files

art y 150000 \ x4a\x47\ x04\ x0e \ xcf\ xc7\ xch
art y 150000 \ x4a\x47\x03\ x0e \ xdO\ xcb\ x00\ x00
G F and JPG files (very conmon)
gif y 155000000 \ x47\ x49\ x46\ x38\ x37\ x61 \ x00\ x3b
gif y 155000000 \ x47\ x49\ x46\ x38\ x39\ x61 \ x00\ x00\ x3b
i pg y 20000000 \ xf f\ xd8\ xf f\ xe0\ x00\ x10 \ xf f\xd9
j pg y 20000000 \ xf f\xd8\ xf f\xel \xff\xd9
j pg y 20000000 \ xf f\xd8\ xff\xe? \xff\xd9
i pg y 20000000 \ xff\xd8 \ xff\xd9

PNG (used in web pages)
png y 200000 \ x50\ x4e\x47? \xff\xfc\xfd\xfe

BWP (used by MSW ndows, use only if you have reason to think there are
BWP files worth digging for. This often kicks back a | ot of false

posi tives
bmp y 100000 BM??\ x00\ x00\ x00
TIF
tif y 200000000 \ x49\ x49\ x2a\ x00

AVl (W ndows ani mation and Di VX/ MPEG 4 novi es)
avi y 4000000 RI FF??22?2AVI

Appl e Qui cktine
Some users have reported that when using these headers that the
headers repeat inside the files. This can generate |ots of smaller
output files. You may want to consider using the -q (quick node)
flag to avoid this problem

nov y 4000000 ?????7???\ x6d\ x6f \ x6f\ x76
nmov y 4000000 ?????2???\ x6d\ x64\ x61\ x74
MPEG Vi deo

137

nmg y 4000000 npg eof

nmpg y 20000000 \ x00\ x00\ x01\ xba \ x00\ x00\ x01\ xb9
nmpg y 20000000 \ x00\ x00\ x01\ xb3 \ x00\ x00\ x01\ xb7
#

Macronedi a Fl ash

fws y 4000000 FW5

#
e
M CROSOFT OFFI CE

- S N N N NN N N N .
#

Word documents

#

1l ook for begin tag and then wait until the next one (NEXT TAG -- usually word
docunent s

and other A e2 structured storage files are 'near' each other. Just make the file
size large enough to catch our maximumsize file. Look in the audit file to see if
any were chopped.

#
doc y 12500000 \xdO\ xcf\x11\xe0\ xall xbl\ xla\ xel\ x00\ x00
\ xdO\ xcf\ x11\ xeO\ xal\ xb1\ x1a\ xel\ xO0\ xO0 NEXT

doc y 12500000 \ xdO\ xcf\x11\ xeO\ xal\ xbl
Qutl ook files
pst y 400000000 \ x21\ x42\ x4e\ xa5\ x6f \ xb5\ xa6
ost y 400000000 \ x21\ x42\ x44\ x4e
Qut | ook Express
dbx y 4000000 \ xcf\ xad\ x12\ xf e\ xc5\ xf d\ x74\ x6f

i dx y 4000000 \ x4a\ x4d\ x46\ x39
mbx y 4000000 \ x4a\ x4d\ x46\ x36

ht m n 50000 <htm </htm >

AQOL Mni | box
mai | y 500000 \ x41\ x4f\ x4c\ x56\ x4d

PGP Disk Files
pgd y 500000 \ x50\ x47\ x50\ x64\ x4d\ x41\ x49\ x4e\ x60\ x01

Public Key Ring

pgp y 100000 \ x99\ x00
Security Ring

pgp y 100000 \x95\x01

HHEHFHFEHFHFFFEHFHFFFEHFFF T FFF TR FEFFE TR FFRFRFE TS
g
m
3

138

HHEFHFEHFHFHFHFFFFHFFFEFFF TR FFFR TR

\

pgp y 100000 \x95\ x00
Encrypted Data or ASCI| arnored keys

pap y 100000 \ xa6\x00
(there should be a trailer for this...)
t xt y 100000 ----- BEG N\ 040PGP

rpm y 1000000 \ xed\ xab
SOUND FI LES
wav y 200000 RI FF????WAVE
Real Audio Files
ra y 1000000 \ x2e\ x72\ x61\ xf d
ra y 1000000 . RWF

W ndows NT registry

dat y 4000000 r egf
W ndows 95 registry
dat y 4000000 CREG

zip y 10000000 PK\ x03\ x04 \ x3c\ xac

j ava y 1000000 \ xca\ xf e\ xba\ xbe

max y 1000000 \ X56\ x69\ x47\ x46\ x6b\ x1a\ x00\ x00\ x00\ x00
x00\ x00\ x05\ x80\ x00\ x00

pins y 8000 \ x50\ x49\ x4e\ x53\ x20\ x34\ x2e\ x32\ x30\ x0d

139

THIS PAGE INTENTIONALLY LEFT BLANK

140

[1]
[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

LIST OF REFERENCES

RCFL Program Annual Report for Fiscal Year 2003.

Prosise, Chris,and Mandia, Kevin, and Pepe, Matt. Incident Response and
Computer Forensics, Second Edition McGraw-Hill Osborne Media, 17
July 2003.

IRS Criminal Investigation Electronic Crimes Program. “ILOOK
Investigator Toolset”. http://www.ilook-forensics.org/. 2005. Last Visited:
March 2005.

Access Data. “Forensic Toolkit”. http://www.accessdata.com/. 2005.
Last Visited: March 2005.

Guidance Software. “Encase”. http://www.guidancesoftware.com/. 2005.
Last Visited: March 2005.

UNIX Man Pages, “FILE”. Last visited: March 2005.
UNIX Man Pages, “STAT(2)”. Last visited: March 2005.

Digital Imaging Group, “DIG2000 file format proposal”, Appendix A,
October 1998.

The Chicago Project: http://chicago.sourceforge.net/,
2002. Last visited: January 2005.

Sun Microsystems. “OpenOffice”. http://www.openoffice.org/. 2005
Last Visited: March 2005.

Adobe Systems Incorporated, “Portable Document Format Reference
Manual Version 1.3, 11 March 1999.

Kornblum, Jesse and Kendall, Kris. “Foremost 0.69”,
http://foremost.sourceforge.net/. 2004. Last visted: March 2005.

Hamilton, Eric. JPEG File Interchange Format, Version 1.02.
1 September 1992

Joint Photographic Experts Group, “JPEG 2000 Specification”
http://www.jpeg.org/jpee2000/, 2004. Last visited: March 2005.

CompuServe Incorporated.,”GRAPHICS INTERCHANGE
FORMAT(sm)”, July 1990

141

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Wouters, Wim. “BMP Format”, February 1997.

Apple Computer, Inc., "QuickTime File Format Specification",
May 1996.

Microsoft Corporation, “Advanced Systems Format (AFS) Specification
Revision 01.20.02”, June 2004.

PKWARE Inc. “.ZIP File Format Specification Version: 6.2.0”,
June 2004.

Wilson,Scott. “WAVE PCM soundfile format”,
http://ccrma.stanford.edu/courses/422/projects/ WaveFormat/, 2003.
Last visited March 2005.

McGowan, John. “AVI Overview”,
http://camars.kaist.ac.kr/~jaewon/special/avi/avi.html , 1997.
Last visited March 2005.

R.S. Boyer, and J.S. Moore, A Fast String Searching Algorithm.,
Communications of the Association for Computing Machinery, 20(10),
1977, pp. 762-772.

Komoncharoensiri, Jamras. “String Searching and Replacement”,
http://www.4d.com/docs/CMU/CMU79780.HTM, 2001. Last visited
December 2004.

Bovet, Daniel, and Cesati, Marco. Understanding the LINUX KERNEL.
Oreilly, Sebastopol, 2001.

Carrier, Brian. “Digital Forensics Tool Testing Image (#8)”,
http://dftt.sourceforge.net/test8/, 2004. Last visited January 2005.

Johnsonbaugh, Richard, and Kalin, Martin. Applications Programming in
ANSI C. 3.Ed., Prentice Hall, New Jersey, 1996.

142

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Chris Eagle
Naval Postgraduate School
Monterey, California

Dr. George Dinolt
Naval Postgraduate School
Monterey, California

Cynthia Irvine
Naval Postgraduate School
Monterey, California

Nick Mikus

Naval Postgraduate School
Monterey, California

143

